Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765658428> ?p ?o ?g. }
- W2765658428 abstract "Electrocardiogram (ECG), non-stationary signals, is extensively used to evaluate the rate and tuning of heartbeats. The main purpose of this paper is to provide an overview of utilizing machine learning and swarm optimization algorithms in ECG classification. Furthermore, feature extraction is the main stage in ECG classification to find a set of relevant features that can attain the best accuracy. Swarm optimization algorithm is combined with classifiers for the purpose of searching the best value of classification parameters that best fits its discriminant purpose. Finally, this paper introduces an ECG heartbeat classification approach based on the water wave optimization (WWO) and support vector machine (SVM). Published literature presented in this paper indicates the potential of ANN and SVM as a useful tool for ECG classification. Author strongly believes that this review will be quite useful to the researchers, scientific engineers working in this area to find out the relevant references." @default.
- W2765658428 created "2017-11-10" @default.
- W2765658428 creator A5031377599 @default.
- W2765658428 creator A5056436780 @default.
- W2765658428 creator A5085432173 @default.
- W2765658428 date "2017-01-01" @default.
- W2765658428 modified "2023-09-26" @default.
- W2765658428 title "ECG signals classification: a review" @default.
- W2765658428 cites W1194606545 @default.
- W2765658428 cites W14070459 @default.
- W2765658428 cites W1497772083 @default.
- W2765658428 cites W1538967293 @default.
- W2765658428 cites W1547339018 @default.
- W2765658428 cites W1787250107 @default.
- W2765658428 cites W1974885452 @default.
- W2765658428 cites W1986307910 @default.
- W2765658428 cites W1988183757 @default.
- W2765658428 cites W1996459614 @default.
- W2765658428 cites W1996894363 @default.
- W2765658428 cites W2003465012 @default.
- W2765658428 cites W2004475192 @default.
- W2765658428 cites W2013897391 @default.
- W2765658428 cites W2015356304 @default.
- W2765658428 cites W2019893900 @default.
- W2765658428 cites W2020355555 @default.
- W2765658428 cites W2025492635 @default.
- W2765658428 cites W2034409864 @default.
- W2765658428 cites W2053322856 @default.
- W2765658428 cites W2054421446 @default.
- W2765658428 cites W2055741845 @default.
- W2765658428 cites W2085155595 @default.
- W2765658428 cites W2091076299 @default.
- W2765658428 cites W2091564852 @default.
- W2765658428 cites W2100537461 @default.
- W2765658428 cites W2101166342 @default.
- W2765658428 cites W2103308415 @default.
- W2765658428 cites W2103777803 @default.
- W2765658428 cites W2104960492 @default.
- W2765658428 cites W2105119992 @default.
- W2765658428 cites W2114842946 @default.
- W2765658428 cites W2125654608 @default.
- W2765658428 cites W2131684487 @default.
- W2765658428 cites W2132300419 @default.
- W2765658428 cites W2146694028 @default.
- W2765658428 cites W2153635508 @default.
- W2765658428 cites W2156909104 @default.
- W2765658428 cites W2162273778 @default.
- W2765658428 cites W2162693370 @default.
- W2765658428 cites W2162800060 @default.
- W2765658428 cites W2167673381 @default.
- W2765658428 cites W2168206092 @default.
- W2765658428 cites W2185287261 @default.
- W2765658428 cites W2189239210 @default.
- W2765658428 cites W2205669028 @default.
- W2765658428 cites W2211945929 @default.
- W2765658428 cites W2218975416 @default.
- W2765658428 cites W2269789594 @default.
- W2765658428 cites W2289821632 @default.
- W2765658428 cites W2315750974 @default.
- W2765658428 cites W2495557304 @default.
- W2765658428 cites W636713068 @default.
- W2765658428 cites W2496311503 @default.
- W2765658428 doi "https://doi.org/10.1504/ijiei.2017.10008807" @default.
- W2765658428 hasPublicationYear "2017" @default.
- W2765658428 type Work @default.
- W2765658428 sameAs 2765658428 @default.
- W2765658428 citedByCount "12" @default.
- W2765658428 countsByYear W27656584282019 @default.
- W2765658428 countsByYear W27656584282020 @default.
- W2765658428 crossrefType "journal-article" @default.
- W2765658428 hasAuthorship W2765658428A5031377599 @default.
- W2765658428 hasAuthorship W2765658428A5056436780 @default.
- W2765658428 hasAuthorship W2765658428A5085432173 @default.
- W2765658428 hasConcept C119857082 @default.
- W2765658428 hasConcept C12267149 @default.
- W2765658428 hasConcept C124101348 @default.
- W2765658428 hasConcept C13852961 @default.
- W2765658428 hasConcept C138885662 @default.
- W2765658428 hasConcept C153180895 @default.
- W2765658428 hasConcept C154945302 @default.
- W2765658428 hasConcept C177264268 @default.
- W2765658428 hasConcept C199360897 @default.
- W2765658428 hasConcept C2776401178 @default.
- W2765658428 hasConcept C38652104 @default.
- W2765658428 hasConcept C41008148 @default.
- W2765658428 hasConcept C41895202 @default.
- W2765658428 hasConcept C69738355 @default.
- W2765658428 hasConceptScore W2765658428C119857082 @default.
- W2765658428 hasConceptScore W2765658428C12267149 @default.
- W2765658428 hasConceptScore W2765658428C124101348 @default.
- W2765658428 hasConceptScore W2765658428C13852961 @default.
- W2765658428 hasConceptScore W2765658428C138885662 @default.
- W2765658428 hasConceptScore W2765658428C153180895 @default.
- W2765658428 hasConceptScore W2765658428C154945302 @default.
- W2765658428 hasConceptScore W2765658428C177264268 @default.
- W2765658428 hasConceptScore W2765658428C199360897 @default.
- W2765658428 hasConceptScore W2765658428C2776401178 @default.
- W2765658428 hasConceptScore W2765658428C38652104 @default.
- W2765658428 hasConceptScore W2765658428C41008148 @default.
- W2765658428 hasConceptScore W2765658428C41895202 @default.