Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765664019> ?p ?o ?g. }
- W2765664019 endingPage "500" @default.
- W2765664019 startingPage "491" @default.
- W2765664019 abstract "In this study, we investigate various deep learning models based on convolutional neural networks (CNNs) and Long Short Term Memory (LSTM) recurrent neural networks for sentiment analysis of Arabic microblogs. Unlike English, the Arabic language has several specifics which complicate the process of feature extraction by traditional methods. We adopted a neural language model created at Google, known as word2vec, for vectorizing text. We then designed and evaluated several deep learning architectures using CNN and LSTM. The experiments were run on two publicly available Arabic tweets datasets. Promising results have been attained when combining LSTMs and compared favorably with most related work." @default.
- W2765664019 created "2017-11-10" @default.
- W2765664019 creator A5057893924 @default.
- W2765664019 creator A5087475730 @default.
- W2765664019 date "2017-01-01" @default.
- W2765664019 modified "2023-10-16" @default.
- W2765664019 title "Hybrid Deep Learning for Sentiment Polarity Determination of Arabic Microblogs" @default.
- W2765664019 cites W1493162876 @default.
- W2765664019 cites W1523493493 @default.
- W2765664019 cites W1543211283 @default.
- W2765664019 cites W1832693441 @default.
- W2765664019 cites W2043287290 @default.
- W2765664019 cites W2064675550 @default.
- W2765664019 cites W2120615054 @default.
- W2765664019 cites W2186845332 @default.
- W2765664019 cites W2239389665 @default.
- W2765664019 cites W2250594687 @default.
- W2765664019 cites W2251137535 @default.
- W2765664019 cites W2274912527 @default.
- W2765664019 cites W2295178230 @default.
- W2765664019 cites W2472386668 @default.
- W2765664019 cites W248942981 @default.
- W2765664019 cites W2517949792 @default.
- W2765664019 cites W2626590196 @default.
- W2765664019 cites W4211186029 @default.
- W2765664019 doi "https://doi.org/10.1007/978-3-319-70096-0_51" @default.
- W2765664019 hasPublicationYear "2017" @default.
- W2765664019 type Work @default.
- W2765664019 sameAs 2765664019 @default.
- W2765664019 citedByCount "33" @default.
- W2765664019 countsByYear W27656640192018 @default.
- W2765664019 countsByYear W27656640192019 @default.
- W2765664019 countsByYear W27656640192020 @default.
- W2765664019 countsByYear W27656640192021 @default.
- W2765664019 countsByYear W27656640192022 @default.
- W2765664019 countsByYear W27656640192023 @default.
- W2765664019 crossrefType "book-chapter" @default.
- W2765664019 hasAuthorship W2765664019A5057893924 @default.
- W2765664019 hasAuthorship W2765664019A5087475730 @default.
- W2765664019 hasConcept C108583219 @default.
- W2765664019 hasConcept C119857082 @default.
- W2765664019 hasConcept C136764020 @default.
- W2765664019 hasConcept C138885662 @default.
- W2765664019 hasConcept C143275388 @default.
- W2765664019 hasConcept C147168706 @default.
- W2765664019 hasConcept C1491633281 @default.
- W2765664019 hasConcept C154945302 @default.
- W2765664019 hasConcept C204321447 @default.
- W2765664019 hasConcept C2776401178 @default.
- W2765664019 hasConcept C2776461190 @default.
- W2765664019 hasConcept C2777361361 @default.
- W2765664019 hasConcept C41008148 @default.
- W2765664019 hasConcept C41608201 @default.
- W2765664019 hasConcept C41895202 @default.
- W2765664019 hasConcept C50644808 @default.
- W2765664019 hasConcept C518677369 @default.
- W2765664019 hasConcept C52622490 @default.
- W2765664019 hasConcept C54355233 @default.
- W2765664019 hasConcept C66402592 @default.
- W2765664019 hasConcept C81363708 @default.
- W2765664019 hasConcept C86803240 @default.
- W2765664019 hasConcept C90805587 @default.
- W2765664019 hasConcept C96455323 @default.
- W2765664019 hasConceptScore W2765664019C108583219 @default.
- W2765664019 hasConceptScore W2765664019C119857082 @default.
- W2765664019 hasConceptScore W2765664019C136764020 @default.
- W2765664019 hasConceptScore W2765664019C138885662 @default.
- W2765664019 hasConceptScore W2765664019C143275388 @default.
- W2765664019 hasConceptScore W2765664019C147168706 @default.
- W2765664019 hasConceptScore W2765664019C1491633281 @default.
- W2765664019 hasConceptScore W2765664019C154945302 @default.
- W2765664019 hasConceptScore W2765664019C204321447 @default.
- W2765664019 hasConceptScore W2765664019C2776401178 @default.
- W2765664019 hasConceptScore W2765664019C2776461190 @default.
- W2765664019 hasConceptScore W2765664019C2777361361 @default.
- W2765664019 hasConceptScore W2765664019C41008148 @default.
- W2765664019 hasConceptScore W2765664019C41608201 @default.
- W2765664019 hasConceptScore W2765664019C41895202 @default.
- W2765664019 hasConceptScore W2765664019C50644808 @default.
- W2765664019 hasConceptScore W2765664019C518677369 @default.
- W2765664019 hasConceptScore W2765664019C52622490 @default.
- W2765664019 hasConceptScore W2765664019C54355233 @default.
- W2765664019 hasConceptScore W2765664019C66402592 @default.
- W2765664019 hasConceptScore W2765664019C81363708 @default.
- W2765664019 hasConceptScore W2765664019C86803240 @default.
- W2765664019 hasConceptScore W2765664019C90805587 @default.
- W2765664019 hasConceptScore W2765664019C96455323 @default.
- W2765664019 hasLocation W27656640191 @default.
- W2765664019 hasOpenAccess W2765664019 @default.
- W2765664019 hasPrimaryLocation W27656640191 @default.
- W2765664019 hasRelatedWork W1807647822 @default.
- W2765664019 hasRelatedWork W2111975591 @default.
- W2765664019 hasRelatedWork W2472490454 @default.
- W2765664019 hasRelatedWork W2805354644 @default.
- W2765664019 hasRelatedWork W2904608781 @default.
- W2765664019 hasRelatedWork W2913839010 @default.
- W2765664019 hasRelatedWork W2950974174 @default.
- W2765664019 hasRelatedWork W3009184972 @default.