Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765667535> ?p ?o ?g. }
- W2765667535 abstract "In this paper, we propose a novel graph model, called weighted sparse representation regularized graph, to learn a robust object representation using multispectral (RGB and thermal) data for visual tracking. In particular, the tracked object is represented with a graph with image patches as nodes. This graph is dynamically learned from two aspects. First, the graph affinity (i.e., graph structure and edge weights) that indicates the appearance compatibility of two neighboring nodes is optimized based on the weighted sparse representation, in which the modality weight is introduced to leverage RGB and thermal information adaptively. Second, each node weight that indicates how likely it belongs to the foreground is propagated from others along with graph affinity. The optimized patch weights are then imposed on the extracted RGB and thermal features, and the target object is finally located by adopting the structured SVM algorithm. Moreover, we also contribute a comprehensive dataset for RGB-T tracking purpose. Comparing with existing ones, the new dataset has the following advantages: 1) Its size is sufficiently large for large-scale performance evaluation (total frame number: 210K, maximum frames per video pair: 8K). 2) The alignment between RGB-T video pairs is highly accurate, which does not need pre- and post-processing. 3) The occlusion levels are annotated for analyzing the occlusion-sensitive performance of different methods. Extensive experiments on both public and newly created datasets demonstrate the effectiveness of the proposed tracker against several state-of-the-art tracking methods." @default.
- W2765667535 created "2017-11-10" @default.
- W2765667535 creator A5008027213 @default.
- W2765667535 creator A5030720334 @default.
- W2765667535 creator A5050590989 @default.
- W2765667535 creator A5059027378 @default.
- W2765667535 creator A5083537432 @default.
- W2765667535 date "2017-10-23" @default.
- W2765667535 modified "2023-10-16" @default.
- W2765667535 title "Weighted Sparse Representation Regularized Graph Learning for RGB-T Object Tracking" @default.
- W2765667535 cites W182940129 @default.
- W2765667535 cites W1915785815 @default.
- W2765667535 cites W1968154520 @default.
- W2765667535 cites W1983594616 @default.
- W2765667535 cites W1997201895 @default.
- W2765667535 cites W1999621311 @default.
- W2765667535 cites W2003060733 @default.
- W2765667535 cites W2003683977 @default.
- W2765667535 cites W2015148749 @default.
- W2765667535 cites W2039094769 @default.
- W2765667535 cites W2066513826 @default.
- W2765667535 cites W2077520767 @default.
- W2765667535 cites W2078823272 @default.
- W2765667535 cites W2089961441 @default.
- W2765667535 cites W2092841641 @default.
- W2765667535 cites W2098941887 @default.
- W2765667535 cites W2108215708 @default.
- W2765667535 cites W2120339771 @default.
- W2765667535 cites W2120594454 @default.
- W2765667535 cites W2124857421 @default.
- W2765667535 cites W2130026429 @default.
- W2765667535 cites W2132103241 @default.
- W2765667535 cites W2143635852 @default.
- W2765667535 cites W2143715815 @default.
- W2765667535 cites W2152887597 @default.
- W2765667535 cites W2154889144 @default.
- W2765667535 cites W2158592639 @default.
- W2765667535 cites W2165700088 @default.
- W2765667535 cites W2183598498 @default.
- W2765667535 cites W2214012879 @default.
- W2765667535 cites W2247229935 @default.
- W2765667535 cites W2339830253 @default.
- W2765667535 cites W2527415613 @default.
- W2765667535 cites W2577056945 @default.
- W2765667535 cites W3010318089 @default.
- W2765667535 cites W4250955649 @default.
- W2765667535 cites W4252829690 @default.
- W2765667535 cites W4292363360 @default.
- W2765667535 doi "https://doi.org/10.1145/3123266.3123289" @default.
- W2765667535 hasPublicationYear "2017" @default.
- W2765667535 type Work @default.
- W2765667535 sameAs 2765667535 @default.
- W2765667535 citedByCount "98" @default.
- W2765667535 countsByYear W27656675352018 @default.
- W2765667535 countsByYear W27656675352019 @default.
- W2765667535 countsByYear W27656675352020 @default.
- W2765667535 countsByYear W27656675352021 @default.
- W2765667535 countsByYear W27656675352022 @default.
- W2765667535 countsByYear W27656675352023 @default.
- W2765667535 crossrefType "proceedings-article" @default.
- W2765667535 hasAuthorship W2765667535A5008027213 @default.
- W2765667535 hasAuthorship W2765667535A5030720334 @default.
- W2765667535 hasAuthorship W2765667535A5050590989 @default.
- W2765667535 hasAuthorship W2765667535A5059027378 @default.
- W2765667535 hasAuthorship W2765667535A5083537432 @default.
- W2765667535 hasConcept C124066611 @default.
- W2765667535 hasConcept C132525143 @default.
- W2765667535 hasConcept C153083717 @default.
- W2765667535 hasConcept C153180895 @default.
- W2765667535 hasConcept C154945302 @default.
- W2765667535 hasConcept C202474056 @default.
- W2765667535 hasConcept C2781238097 @default.
- W2765667535 hasConcept C31972630 @default.
- W2765667535 hasConcept C41008148 @default.
- W2765667535 hasConcept C80444323 @default.
- W2765667535 hasConcept C82990744 @default.
- W2765667535 hasConceptScore W2765667535C124066611 @default.
- W2765667535 hasConceptScore W2765667535C132525143 @default.
- W2765667535 hasConceptScore W2765667535C153083717 @default.
- W2765667535 hasConceptScore W2765667535C153180895 @default.
- W2765667535 hasConceptScore W2765667535C154945302 @default.
- W2765667535 hasConceptScore W2765667535C202474056 @default.
- W2765667535 hasConceptScore W2765667535C2781238097 @default.
- W2765667535 hasConceptScore W2765667535C31972630 @default.
- W2765667535 hasConceptScore W2765667535C41008148 @default.
- W2765667535 hasConceptScore W2765667535C80444323 @default.
- W2765667535 hasConceptScore W2765667535C82990744 @default.
- W2765667535 hasFunder F4320306076 @default.
- W2765667535 hasLocation W27656675351 @default.
- W2765667535 hasOpenAccess W2765667535 @default.
- W2765667535 hasPrimaryLocation W27656675351 @default.
- W2765667535 hasRelatedWork W2137485560 @default.
- W2765667535 hasRelatedWork W2283162247 @default.
- W2765667535 hasRelatedWork W2512938793 @default.
- W2765667535 hasRelatedWork W2524507886 @default.
- W2765667535 hasRelatedWork W2574246024 @default.
- W2765667535 hasRelatedWork W2755343736 @default.
- W2765667535 hasRelatedWork W2789578481 @default.
- W2765667535 hasRelatedWork W2945086821 @default.
- W2765667535 hasRelatedWork W3180107049 @default.