Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765678081> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2765678081 endingPage "80" @default.
- W2765678081 startingPage "69" @default.
- W2765678081 abstract "Abstract Recently, there is a concern about reducing the energy consumption of data centers and clusters for economical and environmental reasons. Furthermore, energy consumption on mobile devices is also important to improve battery life. In this work we address the performance-energy trade-off on shared-memory multicore devices in parallel programs. In particular, we assess the impact of task granularity in performance and energy consumption. Our aim is to give programmers the knowledge they need to understand how to maximize performance of parallel programs while minimizing energy spending. Parallel programs typically divide work in subproblems that are solved in parallel. Each subproblem can then be recursively subdivided until it is no longer worthwhile to spawn smaller tasks. Ideally, the number of parallel tasks should match the number of hardware threads in order to maximize performance and reduce scheduling overheads. Cut-off algorithms are used to stop spawning new parallel tasks and, thus, switching to sequential execution. We evaluate cut-off approaches such as MaxTasks, MaxLevel, Surplus, Adaptive Task Control and LoadBased to understand how they influence performance and energy consumption. Additionally, we also introduce and evaluate three novel approaches: MaxTasksInQueue, StackSize and MaxTasksWithStackSize. Our experiments and analysis show how branching, workload, depth and balance influence the execution time and energy spending over a set of synthetic and real world programs. We concluded that MaxLevel was the fastest overall, while MaxTasksInQueue was the most energy efficient algorithm. Also, despite MaxTasks being slower than the prior two, it can be used by a wider range of programs." @default.
- W2765678081 created "2017-11-10" @default.
- W2765678081 creator A5025772657 @default.
- W2765678081 creator A5089334093 @default.
- W2765678081 date "2018-03-01" @default.
- W2765678081 modified "2023-09-27" @default.
- W2765678081 title "Understanding the impact of task granularity in the energy consumption of parallel programs" @default.
- W2765678081 cites W2046814629 @default.
- W2765678081 cites W2149663533 @default.
- W2765678081 cites W2154705416 @default.
- W2765678081 cites W2471656211 @default.
- W2765678081 doi "https://doi.org/10.1016/j.suscom.2017.10.014" @default.
- W2765678081 hasPublicationYear "2018" @default.
- W2765678081 type Work @default.
- W2765678081 sameAs 2765678081 @default.
- W2765678081 citedByCount "2" @default.
- W2765678081 countsByYear W27656780812018 @default.
- W2765678081 countsByYear W27656780812019 @default.
- W2765678081 crossrefType "journal-article" @default.
- W2765678081 hasAuthorship W2765678081A5025772657 @default.
- W2765678081 hasAuthorship W2765678081A5089334093 @default.
- W2765678081 hasConcept C105795698 @default.
- W2765678081 hasConcept C119599485 @default.
- W2765678081 hasConcept C127413603 @default.
- W2765678081 hasConcept C144024400 @default.
- W2765678081 hasConcept C173608175 @default.
- W2765678081 hasConcept C177774035 @default.
- W2765678081 hasConcept C186370098 @default.
- W2765678081 hasConcept C199360897 @default.
- W2765678081 hasConcept C201995342 @default.
- W2765678081 hasConcept C2780165032 @default.
- W2765678081 hasConcept C2780451532 @default.
- W2765678081 hasConcept C30772137 @default.
- W2765678081 hasConcept C33923547 @default.
- W2765678081 hasConcept C36289849 @default.
- W2765678081 hasConcept C41008148 @default.
- W2765678081 hasConceptScore W2765678081C105795698 @default.
- W2765678081 hasConceptScore W2765678081C119599485 @default.
- W2765678081 hasConceptScore W2765678081C127413603 @default.
- W2765678081 hasConceptScore W2765678081C144024400 @default.
- W2765678081 hasConceptScore W2765678081C173608175 @default.
- W2765678081 hasConceptScore W2765678081C177774035 @default.
- W2765678081 hasConceptScore W2765678081C186370098 @default.
- W2765678081 hasConceptScore W2765678081C199360897 @default.
- W2765678081 hasConceptScore W2765678081C201995342 @default.
- W2765678081 hasConceptScore W2765678081C2780165032 @default.
- W2765678081 hasConceptScore W2765678081C2780451532 @default.
- W2765678081 hasConceptScore W2765678081C30772137 @default.
- W2765678081 hasConceptScore W2765678081C33923547 @default.
- W2765678081 hasConceptScore W2765678081C36289849 @default.
- W2765678081 hasConceptScore W2765678081C41008148 @default.
- W2765678081 hasLocation W27656780811 @default.
- W2765678081 hasOpenAccess W2765678081 @default.
- W2765678081 hasPrimaryLocation W27656780811 @default.
- W2765678081 hasRelatedWork W1929858018 @default.
- W2765678081 hasRelatedWork W1975629292 @default.
- W2765678081 hasRelatedWork W2065523901 @default.
- W2765678081 hasRelatedWork W2092389159 @default.
- W2765678081 hasRelatedWork W2319467001 @default.
- W2765678081 hasRelatedWork W2369207165 @default.
- W2765678081 hasRelatedWork W2406747782 @default.
- W2765678081 hasRelatedWork W2502560717 @default.
- W2765678081 hasRelatedWork W26297114 @default.
- W2765678081 hasRelatedWork W2521117258 @default.
- W2765678081 hasVolume "17" @default.
- W2765678081 isParatext "false" @default.
- W2765678081 isRetracted "false" @default.
- W2765678081 magId "2765678081" @default.
- W2765678081 workType "article" @default.