Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765709160> ?p ?o ?g. }
- W2765709160 abstract "The use of genome skimming allows systematists to quickly generate large data sets, particularly of sequences in high abundance (e.g., plastomes); however, researchers may be overlooking data in low abundance that could be used for phylogenetic or evo-devo studies. Here, we present a bioinformatics approach that explores the low-abundance portion of genome-skimming next-generation sequencing libraries in the fan-flowered Goodeniaceae.Twenty-four previously constructed Goodeniaceae genome-skimming Illumina libraries were examined for their utility in mining low-copy nuclear genes involved in floral symmetry, specifically the CYCLOIDEA (CYC)-like genes. De novo assemblies were generated using multiple assemblers, and BLAST searches were performed for CYC1, CYC2, and CYC3 genes.Overall Trinity, SOAPdenovo-Trans, and SOAPdenovo implementing lower k-mer values uncovered the most data, although no assembler consistently outperformed the others. Using SOAPdenovo-Trans across all 24 data sets, we recovered four CYC-like gene groups (CYC1, CYC2, CYC3A, and CYC3B) from a majority of the species. Alignments of the fragments included the entire coding sequence as well as upstream and downstream regions.Genome-skimming data sets can provide a significant source of low-copy nuclear gene sequence data that may be used for multiple downstream applications." @default.
- W2765709160 created "2017-11-10" @default.
- W2765709160 creator A5005696603 @default.
- W2765709160 creator A5023364662 @default.
- W2765709160 creator A5023497175 @default.
- W2765709160 creator A5044369854 @default.
- W2765709160 creator A5045337824 @default.
- W2765709160 creator A5051137894 @default.
- W2765709160 creator A5057142700 @default.
- W2765709160 creator A5074877279 @default.
- W2765709160 date "2017-10-01" @default.
- W2765709160 modified "2023-10-16" @default.
- W2765709160 title "The unexpected depths of genome‐skimming data: A case study examining Goodeniaceae floral symmetry genes<sup>1</sup>" @default.
- W2765709160 cites W1555866908 @default.
- W2765709160 cites W1749847069 @default.
- W2765709160 cites W1967568611 @default.
- W2765709160 cites W1973235805 @default.
- W2765709160 cites W1976511591 @default.
- W2765709160 cites W1979126009 @default.
- W2765709160 cites W1992077325 @default.
- W2765709160 cites W1996638848 @default.
- W2765709160 cites W1997094521 @default.
- W2765709160 cites W2001457490 @default.
- W2765709160 cites W2011657487 @default.
- W2765709160 cites W2022551336 @default.
- W2765709160 cites W2031971777 @default.
- W2765709160 cites W2032253050 @default.
- W2765709160 cites W2042570077 @default.
- W2765709160 cites W2048306434 @default.
- W2765709160 cites W2059291619 @default.
- W2765709160 cites W2062150244 @default.
- W2765709160 cites W2068499505 @default.
- W2765709160 cites W2078608034 @default.
- W2765709160 cites W2080920158 @default.
- W2765709160 cites W2086393257 @default.
- W2765709160 cites W2087063281 @default.
- W2765709160 cites W2093346388 @default.
- W2765709160 cites W2097416602 @default.
- W2765709160 cites W2101103652 @default.
- W2765709160 cites W2101163218 @default.
- W2765709160 cites W2102041614 @default.
- W2765709160 cites W2103651180 @default.
- W2765709160 cites W2106362827 @default.
- W2765709160 cites W2110392562 @default.
- W2765709160 cites W2110398029 @default.
- W2765709160 cites W2111022924 @default.
- W2765709160 cites W2112551642 @default.
- W2765709160 cites W2118408001 @default.
- W2765709160 cites W2120902911 @default.
- W2765709160 cites W2126419817 @default.
- W2765709160 cites W2128880918 @default.
- W2765709160 cites W2129933858 @default.
- W2765709160 cites W2130358459 @default.
- W2765709160 cites W2135581989 @default.
- W2765709160 cites W2136812135 @default.
- W2765709160 cites W2142360438 @default.
- W2765709160 cites W2151114719 @default.
- W2765709160 cites W2152716769 @default.
- W2765709160 cites W2154966699 @default.
- W2765709160 cites W2157107905 @default.
- W2765709160 cites W2160378127 @default.
- W2765709160 cites W2160971543 @default.
- W2765709160 cites W2162151071 @default.
- W2765709160 cites W2168096158 @default.
- W2765709160 cites W2173435961 @default.
- W2765709160 cites W2181025890 @default.
- W2765709160 cites W2191530794 @default.
- W2765709160 cites W2227572122 @default.
- W2765709160 cites W2329713876 @default.
- W2765709160 cites W2334963267 @default.
- W2765709160 cites W2360230939 @default.
- W2765709160 cites W2414178813 @default.
- W2765709160 cites W2518721893 @default.
- W2765709160 cites W2729895659 @default.
- W2765709160 cites W2765709160 @default.
- W2765709160 doi "https://doi.org/10.3732/apps.1700042" @default.
- W2765709160 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5664964" @default.
- W2765709160 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29109919" @default.
- W2765709160 hasPublicationYear "2017" @default.
- W2765709160 type Work @default.
- W2765709160 sameAs 2765709160 @default.
- W2765709160 citedByCount "21" @default.
- W2765709160 countsByYear W27657091602017 @default.
- W2765709160 countsByYear W27657091602018 @default.
- W2765709160 countsByYear W27657091602019 @default.
- W2765709160 countsByYear W27657091602020 @default.
- W2765709160 countsByYear W27657091602021 @default.
- W2765709160 countsByYear W27657091602022 @default.
- W2765709160 countsByYear W27657091602023 @default.
- W2765709160 crossrefType "journal-article" @default.
- W2765709160 hasAuthorship W2765709160A5005696603 @default.
- W2765709160 hasAuthorship W2765709160A5023364662 @default.
- W2765709160 hasAuthorship W2765709160A5023497175 @default.
- W2765709160 hasAuthorship W2765709160A5044369854 @default.
- W2765709160 hasAuthorship W2765709160A5045337824 @default.
- W2765709160 hasAuthorship W2765709160A5051137894 @default.
- W2765709160 hasAuthorship W2765709160A5057142700 @default.
- W2765709160 hasAuthorship W2765709160A5074877279 @default.
- W2765709160 hasBestOaLocation W27657091601 @default.
- W2765709160 hasConcept C104317684 @default.