Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765722401> ?p ?o ?g. }
- W2765722401 endingPage "2332" @default.
- W2765722401 startingPage "2317" @default.
- W2765722401 abstract "Berthierine and chamosite are iron-rich clay minerals that share similar chemical compositions. Berthierine forms at low temperature (25–45 °C) during early diagenesis and may transfer to chamosite at temperatures of ≥70 °C. Because the formation of berthierine and chamosite requires significant amount of Fe2+ supply, their presence in marine sediments is often used as a mineral proxy for ferruginous conditions in porewater. Recent studies reveal that the Precambrian oceans were characterized by pervasive ferruginous water-column conditions that may favor the formation of iron-rich clay minerals like berthierine and chamosite. To evaluate if ferruginous water-column conditions in the Precambrian ocean played a role on iron-rich clay mineral formation, we conducted an integrated petrographic, mineralogical, and geochemical study on the chamosite- and glauconite-bearing strata of the Mesoproterozoic Xiamaling Formation (~1.40–1.35 Ga) in North China. Petrographic, XRD, SEM, and EDS analyses show that the chamosites of the Xiamaling Formation was transferred from glauconite, with berthierine as an intermediate mineral phase during early diagenesis. Geochemical analyses indicate that a complete transformation from glauconite-dominated to chamosite-dominated end-members (samples) requires an addition of a large amount of Fe (16.9 wt%), Mg (2.4 wt%), and a small amount of Al (1.4 wt%), but a simultaneous release of Si (11.8 wt%) and K (6.0 wt%). Considering that the glauconite- and chamosite-bearing strata are devoid of iron-rich detrital minerals (e.g., biotite and iron oxides) and lack evidence of hydrothermal alteration, the required Fe2+ for glauconite-berthierine-chamosite transformation was most likely from Fe2+-rich (ferruginous) seawater, which may have promoted glauconite-berthierine transformation at the very early diagenetic stage when Fe2+ exchange between porewater and seawater was still available. This interpretation is consistent with the high FeHR/FeT (but low Fepy/FeHR), Fe/Al, and V/Al ratios from the hosting strata that support ferruginous depositional environments. Because most Precambrian strata have passed the oil window temperature (>50–150 °C), the preservation of berthierine would be rare and chamosite should be the representative iron-rich clay mineral. Thus, the abundance of chamosite in fine-grained, marine siliciclastic sediments may be used as a mineral indicator of ferruginous water-column conditions." @default.
- W2765722401 created "2017-11-10" @default.
- W2765722401 creator A5017607299 @default.
- W2765722401 creator A5023348100 @default.
- W2765722401 creator A5043482154 @default.
- W2765722401 creator A5055628224 @default.
- W2765722401 creator A5087877306 @default.
- W2765722401 date "2017-11-01" @default.
- W2765722401 modified "2023-10-01" @default.
- W2765722401 title "Ferruginous seawater facilitates the transformation of glauconite to chamosite: An example from the Mesoproterozoic Xiamaling Formation of North China" @default.
- W2765722401 cites W1154102337 @default.
- W2765722401 cites W1540632399 @default.
- W2765722401 cites W1825683387 @default.
- W2765722401 cites W1880555926 @default.
- W2765722401 cites W1974045653 @default.
- W2765722401 cites W1974438203 @default.
- W2765722401 cites W1975281496 @default.
- W2765722401 cites W1975676133 @default.
- W2765722401 cites W1983765861 @default.
- W2765722401 cites W1987732834 @default.
- W2765722401 cites W1990648220 @default.
- W2765722401 cites W1999626355 @default.
- W2765722401 cites W2002155667 @default.
- W2765722401 cites W2002953373 @default.
- W2765722401 cites W2005100095 @default.
- W2765722401 cites W2007443159 @default.
- W2765722401 cites W2021429804 @default.
- W2765722401 cites W2024176565 @default.
- W2765722401 cites W2030279394 @default.
- W2765722401 cites W2036237907 @default.
- W2765722401 cites W2036325370 @default.
- W2765722401 cites W2040701129 @default.
- W2765722401 cites W2050188617 @default.
- W2765722401 cites W2054620046 @default.
- W2765722401 cites W2057391595 @default.
- W2765722401 cites W2057501684 @default.
- W2765722401 cites W2063219992 @default.
- W2765722401 cites W2066134063 @default.
- W2765722401 cites W2066312123 @default.
- W2765722401 cites W2068704074 @default.
- W2765722401 cites W2079076591 @default.
- W2765722401 cites W2079758306 @default.
- W2765722401 cites W2080920548 @default.
- W2765722401 cites W2081020685 @default.
- W2765722401 cites W2097578772 @default.
- W2765722401 cites W2099369028 @default.
- W2765722401 cites W2100486286 @default.
- W2765722401 cites W2104296040 @default.
- W2765722401 cites W2113929288 @default.
- W2765722401 cites W2117935716 @default.
- W2765722401 cites W2122089877 @default.
- W2765722401 cites W2128712155 @default.
- W2765722401 cites W2138657979 @default.
- W2765722401 cites W2143178560 @default.
- W2765722401 cites W2148585617 @default.
- W2765722401 cites W2148911019 @default.
- W2765722401 cites W2158378393 @default.
- W2765722401 cites W2161582133 @default.
- W2765722401 cites W2180344755 @default.
- W2765722401 cites W2201109763 @default.
- W2765722401 cites W2265295360 @default.
- W2765722401 cites W2274458842 @default.
- W2765722401 cites W2283582373 @default.
- W2765722401 cites W2334477362 @default.
- W2765722401 cites W2334540651 @default.
- W2765722401 cites W2337494462 @default.
- W2765722401 cites W2351192185 @default.
- W2765722401 cites W2359814118 @default.
- W2765722401 cites W2364353613 @default.
- W2765722401 cites W2366684254 @default.
- W2765722401 cites W2372282990 @default.
- W2765722401 cites W2393565522 @default.
- W2765722401 cites W2403801713 @default.
- W2765722401 cites W245959628 @default.
- W2765722401 cites W2490921408 @default.
- W2765722401 cites W2578067670 @default.
- W2765722401 cites W2594907093 @default.
- W2765722401 cites W2603215418 @default.
- W2765722401 cites W2801981169 @default.
- W2765722401 doi "https://doi.org/10.2138/am-2017-6136" @default.
- W2765722401 hasPublicationYear "2017" @default.
- W2765722401 type Work @default.
- W2765722401 sameAs 2765722401 @default.
- W2765722401 citedByCount "39" @default.
- W2765722401 countsByYear W27657224012018 @default.
- W2765722401 countsByYear W27657224012019 @default.
- W2765722401 countsByYear W27657224012020 @default.
- W2765722401 countsByYear W27657224012021 @default.
- W2765722401 countsByYear W27657224012022 @default.
- W2765722401 countsByYear W27657224012023 @default.
- W2765722401 crossrefType "journal-article" @default.
- W2765722401 hasAuthorship W2765722401A5017607299 @default.
- W2765722401 hasAuthorship W2765722401A5023348100 @default.
- W2765722401 hasAuthorship W2765722401A5043482154 @default.
- W2765722401 hasAuthorship W2765722401A5055628224 @default.
- W2765722401 hasAuthorship W2765722401A5087877306 @default.
- W2765722401 hasConcept C109007969 @default.
- W2765722401 hasConcept C126753816 @default.