Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765722562> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2765722562 abstract "Landslides could cause huge damages to properties and severe loss of lives. Landslides can be detected by analyzing the environment data collected via wireless sensor networks (WSN). However, environment data are usually complex and undergo rapid changes. Thus, if landslides can be predicted, people can leave the hazardous areas earlier. A good prediction mechanism is thus critical. Currently, a widely-used method is Artificial Neural Networks (ANNs), which give accurate predictions and exhibit high learning ability. Through training, the ANN weight coefficients can be made precise enough so that the network works similar to a human brain. However, when we have an imbalanced distribution of data, ANNs will not be able to learn the pattern of minority class, that is, the class of very few data samples. As a result, the predictions could be inaccurate. To overcome this shortcoming of ANNs, this work proposes a model switching strategy that can choose between different predictors according to environmental states. Our proposed method can improve prediction performance, and the landslide prediction system can give warnings in an average of 44 minutes prior to landslide occurrence." @default.
- W2765722562 created "2017-11-10" @default.
- W2765722562 creator A5019433605 @default.
- W2765722562 creator A5050423310 @default.
- W2765722562 date "2017-08-01" @default.
- W2765722562 modified "2023-09-26" @default.
- W2765722562 title "Landslide prediction with model switching" @default.
- W2765722562 cites W2009386012 @default.
- W2765722562 cites W2017145427 @default.
- W2765722562 cites W2022651857 @default.
- W2765722562 cites W2066719156 @default.
- W2765722562 cites W2071760479 @default.
- W2765722562 cites W2099550922 @default.
- W2765722562 cites W2104933073 @default.
- W2765722562 cites W2168976680 @default.
- W2765722562 cites W2466630619 @default.
- W2765722562 doi "https://doi.org/10.1109/desec.2017.8073846" @default.
- W2765722562 hasPublicationYear "2017" @default.
- W2765722562 type Work @default.
- W2765722562 sameAs 2765722562 @default.
- W2765722562 citedByCount "1" @default.
- W2765722562 countsByYear W27657225622019 @default.
- W2765722562 crossrefType "proceedings-article" @default.
- W2765722562 hasAuthorship W2765722562A5019433605 @default.
- W2765722562 hasAuthorship W2765722562A5050423310 @default.
- W2765722562 hasConcept C111472728 @default.
- W2765722562 hasConcept C119857082 @default.
- W2765722562 hasConcept C124101348 @default.
- W2765722562 hasConcept C127413603 @default.
- W2765722562 hasConcept C138885662 @default.
- W2765722562 hasConcept C154945302 @default.
- W2765722562 hasConcept C186295008 @default.
- W2765722562 hasConcept C187320778 @default.
- W2765722562 hasConcept C24590314 @default.
- W2765722562 hasConcept C2777212361 @default.
- W2765722562 hasConcept C31258907 @default.
- W2765722562 hasConcept C41008148 @default.
- W2765722562 hasConcept C50644808 @default.
- W2765722562 hasConcept C89611455 @default.
- W2765722562 hasConceptScore W2765722562C111472728 @default.
- W2765722562 hasConceptScore W2765722562C119857082 @default.
- W2765722562 hasConceptScore W2765722562C124101348 @default.
- W2765722562 hasConceptScore W2765722562C127413603 @default.
- W2765722562 hasConceptScore W2765722562C138885662 @default.
- W2765722562 hasConceptScore W2765722562C154945302 @default.
- W2765722562 hasConceptScore W2765722562C186295008 @default.
- W2765722562 hasConceptScore W2765722562C187320778 @default.
- W2765722562 hasConceptScore W2765722562C24590314 @default.
- W2765722562 hasConceptScore W2765722562C2777212361 @default.
- W2765722562 hasConceptScore W2765722562C31258907 @default.
- W2765722562 hasConceptScore W2765722562C41008148 @default.
- W2765722562 hasConceptScore W2765722562C50644808 @default.
- W2765722562 hasConceptScore W2765722562C89611455 @default.
- W2765722562 hasLocation W27657225621 @default.
- W2765722562 hasOpenAccess W2765722562 @default.
- W2765722562 hasPrimaryLocation W27657225621 @default.
- W2765722562 hasRelatedWork W1977432038 @default.
- W2765722562 hasRelatedWork W2183937829 @default.
- W2765722562 hasRelatedWork W2330848184 @default.
- W2765722562 hasRelatedWork W2462773108 @default.
- W2765722562 hasRelatedWork W2548565601 @default.
- W2765722562 hasRelatedWork W2911685008 @default.
- W2765722562 hasRelatedWork W2914433647 @default.
- W2765722562 hasRelatedWork W2944189520 @default.
- W2765722562 hasRelatedWork W2996342798 @default.
- W2765722562 hasRelatedWork W3018792376 @default.
- W2765722562 hasRelatedWork W3030417758 @default.
- W2765722562 hasRelatedWork W3035842564 @default.
- W2765722562 hasRelatedWork W3038369261 @default.
- W2765722562 hasRelatedWork W3103444592 @default.
- W2765722562 hasRelatedWork W3127125959 @default.
- W2765722562 hasRelatedWork W3148534517 @default.
- W2765722562 hasRelatedWork W3172216456 @default.
- W2765722562 hasRelatedWork W3195829100 @default.
- W2765722562 hasRelatedWork W3205977913 @default.
- W2765722562 hasRelatedWork W2466777562 @default.
- W2765722562 isParatext "false" @default.
- W2765722562 isRetracted "false" @default.
- W2765722562 magId "2765722562" @default.
- W2765722562 workType "article" @default.