Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765732730> ?p ?o ?g. }
- W2765732730 endingPage "735" @default.
- W2765732730 startingPage "705" @default.
- W2765732730 abstract "Archetype and archetypoid analysis are extended to shapes. The objective is to find representative shapes. Archetypal shapes are pure (extreme) shapes. We focus on the case where the shape of an object is represented by a configuration matrix of landmarks. As shape space is not a vectorial space, we work in the tangent space, the linearized space about the mean shape. Then, each observation is approximated by a convex combination of actual observations (archetypoids) or archetypes, which are a convex combination of observations in the data set. These tools can contribute to the understanding of shapes, as in the usual multivariate case, since they lie somewhere between clustering and matrix factorization methods. A new simplex visualization tool is also proposed to provide a picture of the archetypal analysis results. We also propose new algorithms for performing archetypal analysis with missing data and its extension to incomplete shapes. A well-known data set is used to illustrate the methodologies developed. The proposed methodology is applied to an apparel design problem in children." @default.
- W2765732730 created "2017-11-10" @default.
- W2765732730 creator A5036391195 @default.
- W2765732730 creator A5058458390 @default.
- W2765732730 creator A5077781210 @default.
- W2765732730 date "2017-10-25" @default.
- W2765732730 modified "2023-10-17" @default.
- W2765732730 title "Archetypal shapes based on landmarks and extension to handle missing data" @default.
- W2765732730 cites W1493454437 @default.
- W2765732730 cites W1840600990 @default.
- W2765732730 cites W1964986127 @default.
- W2765732730 cites W1969002377 @default.
- W2765732730 cites W1977666138 @default.
- W2765732730 cites W1985127012 @default.
- W2765732730 cites W1998292450 @default.
- W2765732730 cites W2016349044 @default.
- W2765732730 cites W2024169176 @default.
- W2765732730 cites W2026043786 @default.
- W2765732730 cites W2027251846 @default.
- W2765732730 cites W2036946248 @default.
- W2765732730 cites W2039725342 @default.
- W2765732730 cites W2040911348 @default.
- W2765732730 cites W2052336637 @default.
- W2765732730 cites W2062125691 @default.
- W2765732730 cites W2068169989 @default.
- W2765732730 cites W2070303252 @default.
- W2765732730 cites W2085498944 @default.
- W2765732730 cites W2091804476 @default.
- W2765732730 cites W2093628490 @default.
- W2765732730 cites W2093859221 @default.
- W2765732730 cites W2114261252 @default.
- W2765732730 cites W2115458614 @default.
- W2765732730 cites W2124678625 @default.
- W2765732730 cites W2134932757 @default.
- W2765732730 cites W2135693944 @default.
- W2765732730 cites W2142687888 @default.
- W2765732730 cites W2155970995 @default.
- W2765732730 cites W2158571933 @default.
- W2765732730 cites W2167492905 @default.
- W2765732730 cites W2170604454 @default.
- W2765732730 cites W2294872230 @default.
- W2765732730 cites W2314231116 @default.
- W2765732730 cites W2322473055 @default.
- W2765732730 cites W2480078801 @default.
- W2765732730 cites W2508194144 @default.
- W2765732730 cites W2609862046 @default.
- W2765732730 cites W2620929803 @default.
- W2765732730 cites W2768911196 @default.
- W2765732730 cites W334078648 @default.
- W2765732730 cites W33507944 @default.
- W2765732730 cites W4231595889 @default.
- W2765732730 cites W4237929415 @default.
- W2765732730 cites W4253763636 @default.
- W2765732730 cites W4297888593 @default.
- W2765732730 cites W812995535 @default.
- W2765732730 doi "https://doi.org/10.1007/s11634-017-0297-7" @default.
- W2765732730 hasPublicationYear "2017" @default.
- W2765732730 type Work @default.
- W2765732730 sameAs 2765732730 @default.
- W2765732730 citedByCount "12" @default.
- W2765732730 countsByYear W27657327302018 @default.
- W2765732730 countsByYear W27657327302019 @default.
- W2765732730 countsByYear W27657327302020 @default.
- W2765732730 countsByYear W27657327302021 @default.
- W2765732730 countsByYear W27657327302022 @default.
- W2765732730 countsByYear W27657327302023 @default.
- W2765732730 crossrefType "journal-article" @default.
- W2765732730 hasAuthorship W2765732730A5036391195 @default.
- W2765732730 hasAuthorship W2765732730A5058458390 @default.
- W2765732730 hasAuthorship W2765732730A5077781210 @default.
- W2765732730 hasBestOaLocation W27657327302 @default.
- W2765732730 hasConcept C106487976 @default.
- W2765732730 hasConcept C111919701 @default.
- W2765732730 hasConcept C112604564 @default.
- W2765732730 hasConcept C11413529 @default.
- W2765732730 hasConcept C119857082 @default.
- W2765732730 hasConcept C12362212 @default.
- W2765732730 hasConcept C154945302 @default.
- W2765732730 hasConcept C157157409 @default.
- W2765732730 hasConcept C159985019 @default.
- W2765732730 hasConcept C177264268 @default.
- W2765732730 hasConcept C192562407 @default.
- W2765732730 hasConcept C199360897 @default.
- W2765732730 hasConcept C2524010 @default.
- W2765732730 hasConcept C2778029271 @default.
- W2765732730 hasConcept C2778572836 @default.
- W2765732730 hasConcept C33923547 @default.
- W2765732730 hasConcept C41008148 @default.
- W2765732730 hasConcept C62438384 @default.
- W2765732730 hasConcept C9357733 @default.
- W2765732730 hasConcept C97686452 @default.
- W2765732730 hasConceptScore W2765732730C106487976 @default.
- W2765732730 hasConceptScore W2765732730C111919701 @default.
- W2765732730 hasConceptScore W2765732730C112604564 @default.
- W2765732730 hasConceptScore W2765732730C11413529 @default.
- W2765732730 hasConceptScore W2765732730C119857082 @default.
- W2765732730 hasConceptScore W2765732730C12362212 @default.
- W2765732730 hasConceptScore W2765732730C154945302 @default.