Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765734501> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2765734501 endingPage "123" @default.
- W2765734501 startingPage "109" @default.
- W2765734501 abstract "Sentiment Analysis is a widely studied research field in both research and industry, and there are different approaches for addressing sentiment analysis related tasks. Sentiment Analysis engines implement approaches spanning from lexicon-based techniques, to machine learning, or involving syntactical rules analysis. Such systems are already evaluated in international research challenges. However, Semantic Sentiment Analysis approaches, which take into account or rely also on large semantic knowledge bases and implement Semantic Web best practices, are not under specific experimental evaluation and comparison by other international challenges. Such approaches may potentially deliver higher performance, since they are also able to analyze the implicit, semantics features associated with natural language concepts. In this paper, we present the fourth edition of the Semantic Sentiment Analysis Challenge, in which systems implementing or relying on semantic features are evaluated in a competition involving large test sets, and on different sentiment tasks. Systems merely based on syntax/word-count or just lexicon-based approaches have been excluded by the evaluation. Then, we present the results of the evaluation for each task and show the winner of the most innovative approach award, that combines several knowledge bases for addressing the sentiment analysis task." @default.
- W2765734501 created "2017-11-10" @default.
- W2765734501 creator A5014500892 @default.
- W2765734501 creator A5014673075 @default.
- W2765734501 creator A5074934997 @default.
- W2765734501 date "2017-01-01" @default.
- W2765734501 modified "2023-09-27" @default.
- W2765734501 title "Semantic Sentiment Analysis Challenge at ESWC2017" @default.
- W2765734501 cites W2040233874 @default.
- W2765734501 cites W2185377482 @default.
- W2765734501 cites W2190432185 @default.
- W2765734501 cites W2527680541 @default.
- W2765734501 cites W2528027646 @default.
- W2765734501 cites W2528040733 @default.
- W2765734501 cites W2528289822 @default.
- W2765734501 cites W2606776062 @default.
- W2765734501 cites W2612769033 @default.
- W2765734501 cites W2757033822 @default.
- W2765734501 cites W4238285116 @default.
- W2765734501 cites W4240156601 @default.
- W2765734501 cites W4241521408 @default.
- W2765734501 cites W56640875 @default.
- W2765734501 doi "https://doi.org/10.1007/978-3-319-69146-6_10" @default.
- W2765734501 hasPublicationYear "2017" @default.
- W2765734501 type Work @default.
- W2765734501 sameAs 2765734501 @default.
- W2765734501 citedByCount "10" @default.
- W2765734501 countsByYear W27657345012018 @default.
- W2765734501 countsByYear W27657345012020 @default.
- W2765734501 countsByYear W27657345012021 @default.
- W2765734501 countsByYear W27657345012022 @default.
- W2765734501 crossrefType "book-chapter" @default.
- W2765734501 hasAuthorship W2765734501A5014500892 @default.
- W2765734501 hasAuthorship W2765734501A5014673075 @default.
- W2765734501 hasAuthorship W2765734501A5074934997 @default.
- W2765734501 hasConcept C154945302 @default.
- W2765734501 hasConcept C162324750 @default.
- W2765734501 hasConcept C184337299 @default.
- W2765734501 hasConcept C187736073 @default.
- W2765734501 hasConcept C199360897 @default.
- W2765734501 hasConcept C204321447 @default.
- W2765734501 hasConcept C23123220 @default.
- W2765734501 hasConcept C2777946921 @default.
- W2765734501 hasConcept C2778121359 @default.
- W2765734501 hasConcept C2780451532 @default.
- W2765734501 hasConcept C41008148 @default.
- W2765734501 hasConcept C60048249 @default.
- W2765734501 hasConcept C66402592 @default.
- W2765734501 hasConceptScore W2765734501C154945302 @default.
- W2765734501 hasConceptScore W2765734501C162324750 @default.
- W2765734501 hasConceptScore W2765734501C184337299 @default.
- W2765734501 hasConceptScore W2765734501C187736073 @default.
- W2765734501 hasConceptScore W2765734501C199360897 @default.
- W2765734501 hasConceptScore W2765734501C204321447 @default.
- W2765734501 hasConceptScore W2765734501C23123220 @default.
- W2765734501 hasConceptScore W2765734501C2777946921 @default.
- W2765734501 hasConceptScore W2765734501C2778121359 @default.
- W2765734501 hasConceptScore W2765734501C2780451532 @default.
- W2765734501 hasConceptScore W2765734501C41008148 @default.
- W2765734501 hasConceptScore W2765734501C60048249 @default.
- W2765734501 hasConceptScore W2765734501C66402592 @default.
- W2765734501 hasLocation W27657345011 @default.
- W2765734501 hasOpenAccess W2765734501 @default.
- W2765734501 hasPrimaryLocation W27657345011 @default.
- W2765734501 hasRelatedWork W1484312846 @default.
- W2765734501 hasRelatedWork W1994972134 @default.
- W2765734501 hasRelatedWork W2029159481 @default.
- W2765734501 hasRelatedWork W2362044995 @default.
- W2765734501 hasRelatedWork W2467206427 @default.
- W2765734501 hasRelatedWork W2915620629 @default.
- W2765734501 hasRelatedWork W2965885965 @default.
- W2765734501 hasRelatedWork W3011677438 @default.
- W2765734501 hasRelatedWork W3153487575 @default.
- W2765734501 hasRelatedWork W4226173368 @default.
- W2765734501 isParatext "false" @default.
- W2765734501 isRetracted "false" @default.
- W2765734501 magId "2765734501" @default.
- W2765734501 workType "book-chapter" @default.