Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765786897> ?p ?o ?g. }
- W2765786897 abstract "Multi-view feature learning aims at improving the performances of learning tasks, by fusing various kinds of features (views), such as heterogeneous features and/or homogeneous features. Current leading multi-view feature learning approaches usually learn features in each view separately while not uncovering shared information from multiple views. In this paper, we propose a multi-view feature learning framework, which can simultaneously learn separate subspace for each view and shared subspace for all the views, respectively; specifically, the separate subspace for each view can preserve the particular information within this view, meanwhile, the shared subspace can capture feature correlation among multiple views. Both the particularity and communality are essential for classification. Furthermore, we relax the labels of training samples within the concatenated subspaces, thus resulting in the retargeted least square regression (LSR) classifier. The transformation matrices tailored for each subspace within the corresponding view and the label relaxed LSR classifier are jointly learned in a unified framework, based on an efficient alternative optimization manner. Extensive experiments on four benchmark data sets well demonstrate the superiority of the proposed method, which has led to better performances than compared counterpart methods." @default.
- W2765786897 created "2017-11-10" @default.
- W2765786897 creator A5001913760 @default.
- W2765786897 creator A5011077051 @default.
- W2765786897 creator A5059343631 @default.
- W2765786897 creator A5084688255 @default.
- W2765786897 creator A5087363347 @default.
- W2765786897 creator A5088888083 @default.
- W2765786897 date "2017-01-01" @default.
- W2765786897 modified "2023-10-14" @default.
- W2765786897 title "Retargeted Multi-View Feature Learning With Separate and Shared Subspace Uncovering" @default.
- W2765786897 cites W1486189686 @default.
- W2765786897 cites W1523385540 @default.
- W2765786897 cites W1536675765 @default.
- W2765786897 cites W1566499617 @default.
- W2765786897 cites W1625255723 @default.
- W2765786897 cites W1670132599 @default.
- W2765786897 cites W1672347394 @default.
- W2765786897 cites W1803413907 @default.
- W2765786897 cites W1953764758 @default.
- W2765786897 cites W2001600470 @default.
- W2765786897 cites W2004427069 @default.
- W2765786897 cites W2007972815 @default.
- W2765786897 cites W2010466709 @default.
- W2765786897 cites W2024935685 @default.
- W2765786897 cites W2025341678 @default.
- W2765786897 cites W2027248184 @default.
- W2765786897 cites W2027922120 @default.
- W2765786897 cites W2031823405 @default.
- W2765786897 cites W2032642422 @default.
- W2765786897 cites W2037603696 @default.
- W2765786897 cites W2048679005 @default.
- W2765786897 cites W2062118960 @default.
- W2765786897 cites W2076455317 @default.
- W2765786897 cites W2079666190 @default.
- W2765786897 cites W208317833 @default.
- W2765786897 cites W2085789144 @default.
- W2765786897 cites W2089468765 @default.
- W2765786897 cites W2090101874 @default.
- W2765786897 cites W2100235303 @default.
- W2765786897 cites W2106253207 @default.
- W2765786897 cites W2111700528 @default.
- W2765786897 cites W2116589987 @default.
- W2765786897 cites W2117866949 @default.
- W2765786897 cites W2119474464 @default.
- W2765786897 cites W2123111158 @default.
- W2765786897 cites W2124372976 @default.
- W2765786897 cites W2126250169 @default.
- W2765786897 cites W2126574503 @default.
- W2765786897 cites W2127069950 @default.
- W2765786897 cites W2130055251 @default.
- W2765786897 cites W2142674578 @default.
- W2765786897 cites W2144299089 @default.
- W2765786897 cites W2144903813 @default.
- W2765786897 cites W2145295623 @default.
- W2765786897 cites W2146512693 @default.
- W2765786897 cites W2150772522 @default.
- W2765786897 cites W2151103935 @default.
- W2765786897 cites W2151207331 @default.
- W2765786897 cites W2154462399 @default.
- W2765786897 cites W2154630456 @default.
- W2765786897 cites W2155893237 @default.
- W2765786897 cites W2161969291 @default.
- W2765786897 cites W2163605009 @default.
- W2765786897 cites W2164535072 @default.
- W2765786897 cites W2171188027 @default.
- W2765786897 cites W2186500555 @default.
- W2765786897 cites W2197707282 @default.
- W2765786897 cites W2397674542 @default.
- W2765786897 cites W2408202817 @default.
- W2765786897 cites W2408716783 @default.
- W2765786897 cites W2509591188 @default.
- W2765786897 cites W2590019597 @default.
- W2765786897 cites W2604405260 @default.
- W2765786897 cites W2610681481 @default.
- W2765786897 cites W2619420291 @default.
- W2765786897 cites W297461772 @default.
- W2765786897 cites W3120740533 @default.
- W2765786897 cites W3149375329 @default.
- W2765786897 cites W53987483 @default.
- W2765786897 cites W87822204 @default.
- W2765786897 doi "https://doi.org/10.1109/access.2017.2767818" @default.
- W2765786897 hasPublicationYear "2017" @default.
- W2765786897 type Work @default.
- W2765786897 sameAs 2765786897 @default.
- W2765786897 citedByCount "7" @default.
- W2765786897 countsByYear W27657868972020 @default.
- W2765786897 countsByYear W27657868972021 @default.
- W2765786897 countsByYear W27657868972022 @default.
- W2765786897 crossrefType "journal-article" @default.
- W2765786897 hasAuthorship W2765786897A5001913760 @default.
- W2765786897 hasAuthorship W2765786897A5011077051 @default.
- W2765786897 hasAuthorship W2765786897A5059343631 @default.
- W2765786897 hasAuthorship W2765786897A5084688255 @default.
- W2765786897 hasAuthorship W2765786897A5087363347 @default.
- W2765786897 hasAuthorship W2765786897A5088888083 @default.
- W2765786897 hasBestOaLocation W27657868971 @default.
- W2765786897 hasConcept C106135958 @default.
- W2765786897 hasConcept C119857082 @default.
- W2765786897 hasConcept C12362212 @default.