Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765791163> ?p ?o ?g. }
- W2765791163 endingPage "1613" @default.
- W2765791163 startingPage "1613" @default.
- W2765791163 abstract "This paper discusses short-term electricity-load forecasting using an extreme learning machine (ELM) with automatic knowledge representation from a given input-output data set. For this purpose, we use a Takagi-Sugeno-Kang (TSK)-based ELM to develop a systematic approach to generating if-then rules, while the conventional ELM operates without knowledge information. The TSK-ELM design includes a two-phase development. First, we generate an initial random-partition matrix and estimate cluster centers for random clustering. The obtained cluster centers are used to determine the premise parameters of fuzzy if-then rules. Next, the linear weights of the TSK fuzzy type are estimated using the least squares estimate (LSE) method. These linear weights are used as the consequent parameters in the TSK-ELM design. The experiments were performed on short-term electricity-load data for forecasting. The electricity-load data were used to forecast hourly day-ahead loads given temperature forecasts; holiday information; and historical loads from the New England ISO. In order to quantify the performance of the forecaster, we use metrics and statistical characteristics such as root mean squared error (RMSE) as well as mean absolute error (MAE), mean absolute percent error (MAPE), and R-squared, respectively. The experimental results revealed that the proposed method showed good performance when compared with a conventional ELM with four activation functions such sigmoid, sine, radial basis function, and rectified linear unit (ReLU). It possessed superior prediction performance and knowledge information and a small number of rules." @default.
- W2765791163 created "2017-11-10" @default.
- W2765791163 creator A5019808453 @default.
- W2765791163 creator A5080268629 @default.
- W2765791163 date "2017-10-16" @default.
- W2765791163 modified "2023-10-15" @default.
- W2765791163 title "Short-Term Electricity-Load Forecasting Using a TSK-Based Extreme Learning Machine with Knowledge Representation" @default.
- W2765791163 cites W153870454 @default.
- W2765791163 cites W1963682480 @default.
- W2765791163 cites W1991414280 @default.
- W2765791163 cites W1999198322 @default.
- W2765791163 cites W2021150359 @default.
- W2765791163 cites W2026131661 @default.
- W2765791163 cites W2031878488 @default.
- W2765791163 cites W2042051376 @default.
- W2765791163 cites W2051265083 @default.
- W2765791163 cites W2053036794 @default.
- W2765791163 cites W2075846637 @default.
- W2765791163 cites W2100714230 @default.
- W2765791163 cites W2126990626 @default.
- W2765791163 cites W2133752269 @default.
- W2765791163 cites W2136886086 @default.
- W2765791163 cites W2141789512 @default.
- W2765791163 cites W2229668941 @default.
- W2765791163 cites W2292129691 @default.
- W2765791163 cites W2341910059 @default.
- W2765791163 cites W2343702657 @default.
- W2765791163 cites W2344130254 @default.
- W2765791163 cites W2522747841 @default.
- W2765791163 cites W2561287781 @default.
- W2765791163 cites W2570991997 @default.
- W2765791163 cites W2604099671 @default.
- W2765791163 cites W2621091593 @default.
- W2765791163 cites W2749000650 @default.
- W2765791163 cites W2781280073 @default.
- W2765791163 doi "https://doi.org/10.3390/en10101613" @default.
- W2765791163 hasPublicationYear "2017" @default.
- W2765791163 type Work @default.
- W2765791163 sameAs 2765791163 @default.
- W2765791163 citedByCount "32" @default.
- W2765791163 countsByYear W27657911632018 @default.
- W2765791163 countsByYear W27657911632019 @default.
- W2765791163 countsByYear W27657911632020 @default.
- W2765791163 countsByYear W27657911632021 @default.
- W2765791163 countsByYear W27657911632022 @default.
- W2765791163 countsByYear W27657911632023 @default.
- W2765791163 crossrefType "journal-article" @default.
- W2765791163 hasAuthorship W2765791163A5019808453 @default.
- W2765791163 hasAuthorship W2765791163A5080268629 @default.
- W2765791163 hasBestOaLocation W27657911631 @default.
- W2765791163 hasConcept C105795698 @default.
- W2765791163 hasConcept C121332964 @default.
- W2765791163 hasConcept C124101348 @default.
- W2765791163 hasConcept C139945424 @default.
- W2765791163 hasConcept C150217764 @default.
- W2765791163 hasConcept C154945302 @default.
- W2765791163 hasConcept C163258240 @default.
- W2765791163 hasConcept C2780150128 @default.
- W2765791163 hasConcept C33923547 @default.
- W2765791163 hasConcept C41008148 @default.
- W2765791163 hasConcept C50644808 @default.
- W2765791163 hasConcept C61797465 @default.
- W2765791163 hasConcept C62520636 @default.
- W2765791163 hasConcept C73555534 @default.
- W2765791163 hasConcept C77715397 @default.
- W2765791163 hasConcept C81388566 @default.
- W2765791163 hasConceptScore W2765791163C105795698 @default.
- W2765791163 hasConceptScore W2765791163C121332964 @default.
- W2765791163 hasConceptScore W2765791163C124101348 @default.
- W2765791163 hasConceptScore W2765791163C139945424 @default.
- W2765791163 hasConceptScore W2765791163C150217764 @default.
- W2765791163 hasConceptScore W2765791163C154945302 @default.
- W2765791163 hasConceptScore W2765791163C163258240 @default.
- W2765791163 hasConceptScore W2765791163C2780150128 @default.
- W2765791163 hasConceptScore W2765791163C33923547 @default.
- W2765791163 hasConceptScore W2765791163C41008148 @default.
- W2765791163 hasConceptScore W2765791163C50644808 @default.
- W2765791163 hasConceptScore W2765791163C61797465 @default.
- W2765791163 hasConceptScore W2765791163C62520636 @default.
- W2765791163 hasConceptScore W2765791163C73555534 @default.
- W2765791163 hasConceptScore W2765791163C77715397 @default.
- W2765791163 hasConceptScore W2765791163C81388566 @default.
- W2765791163 hasIssue "10" @default.
- W2765791163 hasLocation W27657911631 @default.
- W2765791163 hasLocation W27657911632 @default.
- W2765791163 hasOpenAccess W2765791163 @default.
- W2765791163 hasPrimaryLocation W27657911631 @default.
- W2765791163 hasRelatedWork W2039947585 @default.
- W2765791163 hasRelatedWork W2100663672 @default.
- W2765791163 hasRelatedWork W3169372533 @default.
- W2765791163 hasRelatedWork W3178576217 @default.
- W2765791163 hasRelatedWork W4318676890 @default.
- W2765791163 hasRelatedWork W4385195237 @default.
- W2765791163 hasRelatedWork W4385398859 @default.
- W2765791163 hasRelatedWork W4386220996 @default.
- W2765791163 hasRelatedWork W4386401794 @default.
- W2765791163 hasRelatedWork W1969847908 @default.
- W2765791163 hasVolume "10" @default.