Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765795670> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2765795670 endingPage "603" @default.
- W2765795670 startingPage "588" @default.
- W2765795670 abstract "The cloud IaaS provider supports diverse services for users to access big data of the real-time entertainment or the non-real-time working traffic. The IaaS provider builds data centers that include different types cloud resources/equipment, e.g., physical machines, virtual machines, networking, storages, power equipment, etc., and significantly increases cloud cost. An efficient cloud resource management is required for the cloud provider to maximize system reward while satisfying the QoS of various SLAs. This paper proposes a Reward-based adaptive global Cloud Resource Management (RCRM) that consists of three main contributions: the Large-scale and Small-scale traffic Predictions (LSP), Adaptive Cloud resource Allocation, and Maximum Net Profit. The M/M/m/m Markov chain model analyzes the service blocking and the required number of VMs for each request. For maximizing the system net profit, the cloud providers always oversell cloud resources. However, the cost of deploying data centers at different areas in the world is different. This paper adopts the VM migration-in/migration-out and task redirection to adaptively allocate cloud resources among global data centers. Numerical results demonstrate RCRM outperforms the others in dropping probability, SLA violation, violation penalty and net profit. Furthermore, the dropping probability of analysis is very close to that of simulation and justifies the correctness of the proposed Markov chain model." @default.
- W2765795670 created "2017-11-10" @default.
- W2765795670 creator A5002686648 @default.
- W2765795670 creator A5047862403 @default.
- W2765795670 creator A5072787350 @default.
- W2765795670 date "2018-02-01" @default.
- W2765795670 modified "2023-10-15" @default.
- W2765795670 title "Reward-based Markov chain analysis adaptive global resource management for inter-cloud computing" @default.
- W2765795670 cites W1965470141 @default.
- W2765795670 cites W1974879833 @default.
- W2765795670 cites W1981212633 @default.
- W2765795670 cites W1990025973 @default.
- W2765795670 cites W2007740943 @default.
- W2765795670 cites W2021535663 @default.
- W2765795670 cites W2026580125 @default.
- W2765795670 cites W2027753527 @default.
- W2765795670 cites W2065266960 @default.
- W2765795670 cites W2071708927 @default.
- W2765795670 cites W2072362295 @default.
- W2765795670 cites W2080521149 @default.
- W2765795670 cites W2082410059 @default.
- W2765795670 cites W2085725725 @default.
- W2765795670 cites W2095333910 @default.
- W2765795670 cites W2099197225 @default.
- W2765795670 cites W2101326083 @default.
- W2765795670 cites W2136657126 @default.
- W2765795670 cites W2139583278 @default.
- W2765795670 cites W2149085204 @default.
- W2765795670 cites W2149200585 @default.
- W2765795670 cites W2150914379 @default.
- W2765795670 cites W2545488977 @default.
- W2765795670 doi "https://doi.org/10.1016/j.future.2017.09.046" @default.
- W2765795670 hasPublicationYear "2018" @default.
- W2765795670 type Work @default.
- W2765795670 sameAs 2765795670 @default.
- W2765795670 citedByCount "12" @default.
- W2765795670 countsByYear W27657956702018 @default.
- W2765795670 countsByYear W27657956702019 @default.
- W2765795670 countsByYear W27657956702020 @default.
- W2765795670 countsByYear W27657956702021 @default.
- W2765795670 countsByYear W27657956702023 @default.
- W2765795670 crossrefType "journal-article" @default.
- W2765795670 hasAuthorship W2765795670A5002686648 @default.
- W2765795670 hasAuthorship W2765795670A5047862403 @default.
- W2765795670 hasAuthorship W2765795670A5072787350 @default.
- W2765795670 hasConcept C111919701 @default.
- W2765795670 hasConcept C119857082 @default.
- W2765795670 hasConcept C120314980 @default.
- W2765795670 hasConcept C162324750 @default.
- W2765795670 hasConcept C175444787 @default.
- W2765795670 hasConcept C181622380 @default.
- W2765795670 hasConcept C25344961 @default.
- W2765795670 hasConcept C2778160497 @default.
- W2765795670 hasConcept C31258907 @default.
- W2765795670 hasConcept C41008148 @default.
- W2765795670 hasConcept C5119721 @default.
- W2765795670 hasConcept C79974875 @default.
- W2765795670 hasConcept C98763669 @default.
- W2765795670 hasConceptScore W2765795670C111919701 @default.
- W2765795670 hasConceptScore W2765795670C119857082 @default.
- W2765795670 hasConceptScore W2765795670C120314980 @default.
- W2765795670 hasConceptScore W2765795670C162324750 @default.
- W2765795670 hasConceptScore W2765795670C175444787 @default.
- W2765795670 hasConceptScore W2765795670C181622380 @default.
- W2765795670 hasConceptScore W2765795670C25344961 @default.
- W2765795670 hasConceptScore W2765795670C2778160497 @default.
- W2765795670 hasConceptScore W2765795670C31258907 @default.
- W2765795670 hasConceptScore W2765795670C41008148 @default.
- W2765795670 hasConceptScore W2765795670C5119721 @default.
- W2765795670 hasConceptScore W2765795670C79974875 @default.
- W2765795670 hasConceptScore W2765795670C98763669 @default.
- W2765795670 hasFunder F4320322795 @default.
- W2765795670 hasLocation W27657956701 @default.
- W2765795670 hasOpenAccess W2765795670 @default.
- W2765795670 hasPrimaryLocation W27657956701 @default.
- W2765795670 hasRelatedWork W1411227457 @default.
- W2765795670 hasRelatedWork W2212663758 @default.
- W2765795670 hasRelatedWork W2535975572 @default.
- W2765795670 hasRelatedWork W2573860592 @default.
- W2765795670 hasRelatedWork W2735449971 @default.
- W2765795670 hasRelatedWork W2795027727 @default.
- W2765795670 hasRelatedWork W2811232571 @default.
- W2765795670 hasRelatedWork W2977470299 @default.
- W2765795670 hasRelatedWork W3006629403 @default.
- W2765795670 hasRelatedWork W4313252615 @default.
- W2765795670 hasVolume "79" @default.
- W2765795670 isParatext "false" @default.
- W2765795670 isRetracted "false" @default.
- W2765795670 magId "2765795670" @default.
- W2765795670 workType "article" @default.