Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765820957> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2765820957 abstract "As the malware threat landscape is constantly evolving and over one million new malware strains are being generated every day [1], early automatic detection of threats constitutes a top priority of cybersecurity research, and amplifies the need for more advanced detection and classification methods that are effective and efficient. In this paper, we present the application of machine learning algorithms to predict the length of time malware should be executed in a sandbox to reveal its malicious intent. We also introduce a novel hybrid approach to malware classification based on static binary analysis and dynamic analysis of malware. Static analysis extracts information from a binary file without executing it, and dynamic analysis captures the behavior of malware in a sandbox environment. Our experimental results show that by turning the aforementioned problems into machine learning problems, it is possible to get an accuracy of up to 90% on the prediction of the malware analysis run time and up to 92% on the classification of malware families." @default.
- W2765820957 created "2017-11-10" @default.
- W2765820957 creator A5058896802 @default.
- W2765820957 creator A5072018292 @default.
- W2765820957 creator A5072383152 @default.
- W2765820957 date "2017-09-01" @default.
- W2765820957 modified "2023-10-10" @default.
- W2765820957 title "Improving the effectiveness and efficiency of dynamic malware analysis with machine learning" @default.
- W2765820957 cites W1851403712 @default.
- W2765820957 cites W1893133781 @default.
- W2765820957 cites W1963849366 @default.
- W2765820957 cites W1996975221 @default.
- W2765820957 cites W2053896336 @default.
- W2765820957 cites W2056127986 @default.
- W2765820957 cites W2085807744 @default.
- W2765820957 cites W2111038628 @default.
- W2765820957 cites W2115392339 @default.
- W2765820957 cites W2122672392 @default.
- W2765820957 cites W2126047957 @default.
- W2765820957 cites W2132874238 @default.
- W2765820957 cites W2144112223 @default.
- W2765820957 cites W2150795982 @default.
- W2765820957 cites W2162034246 @default.
- W2765820957 cites W2247776437 @default.
- W2765820957 cites W2313513770 @default.
- W2765820957 cites W2396876049 @default.
- W2765820957 cites W2493100395 @default.
- W2765820957 cites W2557513839 @default.
- W2765820957 doi "https://doi.org/10.1109/rweek.2017.8088644" @default.
- W2765820957 hasPublicationYear "2017" @default.
- W2765820957 type Work @default.
- W2765820957 sameAs 2765820957 @default.
- W2765820957 citedByCount "24" @default.
- W2765820957 countsByYear W27658209572018 @default.
- W2765820957 countsByYear W27658209572019 @default.
- W2765820957 countsByYear W27658209572020 @default.
- W2765820957 countsByYear W27658209572021 @default.
- W2765820957 countsByYear W27658209572022 @default.
- W2765820957 countsByYear W27658209572023 @default.
- W2765820957 crossrefType "proceedings-article" @default.
- W2765820957 hasAuthorship W2765820957A5058896802 @default.
- W2765820957 hasAuthorship W2765820957A5072018292 @default.
- W2765820957 hasAuthorship W2765820957A5072383152 @default.
- W2765820957 hasConcept C111919701 @default.
- W2765820957 hasConcept C119857082 @default.
- W2765820957 hasConcept C12267149 @default.
- W2765820957 hasConcept C124101348 @default.
- W2765820957 hasConcept C154945302 @default.
- W2765820957 hasConcept C167981075 @default.
- W2765820957 hasConcept C199360897 @default.
- W2765820957 hasConcept C2779395397 @default.
- W2765820957 hasConcept C33923547 @default.
- W2765820957 hasConcept C38652104 @default.
- W2765820957 hasConcept C41008148 @default.
- W2765820957 hasConcept C48372109 @default.
- W2765820957 hasConcept C541664917 @default.
- W2765820957 hasConcept C66905080 @default.
- W2765820957 hasConcept C84525096 @default.
- W2765820957 hasConcept C94375191 @default.
- W2765820957 hasConcept C97686452 @default.
- W2765820957 hasConceptScore W2765820957C111919701 @default.
- W2765820957 hasConceptScore W2765820957C119857082 @default.
- W2765820957 hasConceptScore W2765820957C12267149 @default.
- W2765820957 hasConceptScore W2765820957C124101348 @default.
- W2765820957 hasConceptScore W2765820957C154945302 @default.
- W2765820957 hasConceptScore W2765820957C167981075 @default.
- W2765820957 hasConceptScore W2765820957C199360897 @default.
- W2765820957 hasConceptScore W2765820957C2779395397 @default.
- W2765820957 hasConceptScore W2765820957C33923547 @default.
- W2765820957 hasConceptScore W2765820957C38652104 @default.
- W2765820957 hasConceptScore W2765820957C41008148 @default.
- W2765820957 hasConceptScore W2765820957C48372109 @default.
- W2765820957 hasConceptScore W2765820957C541664917 @default.
- W2765820957 hasConceptScore W2765820957C66905080 @default.
- W2765820957 hasConceptScore W2765820957C84525096 @default.
- W2765820957 hasConceptScore W2765820957C94375191 @default.
- W2765820957 hasConceptScore W2765820957C97686452 @default.
- W2765820957 hasLocation W27658209571 @default.
- W2765820957 hasOpenAccess W2765820957 @default.
- W2765820957 hasPrimaryLocation W27658209571 @default.
- W2765820957 hasRelatedWork W2007647094 @default.
- W2765820957 hasRelatedWork W2056625284 @default.
- W2765820957 hasRelatedWork W2067547021 @default.
- W2765820957 hasRelatedWork W2183925834 @default.
- W2765820957 hasRelatedWork W2311131113 @default.
- W2765820957 hasRelatedWork W2610659201 @default.
- W2765820957 hasRelatedWork W2805262980 @default.
- W2765820957 hasRelatedWork W2995172056 @default.
- W2765820957 hasRelatedWork W4213012150 @default.
- W2765820957 hasRelatedWork W4234891089 @default.
- W2765820957 isParatext "false" @default.
- W2765820957 isRetracted "false" @default.
- W2765820957 magId "2765820957" @default.
- W2765820957 workType "article" @default.