Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765898593> ?p ?o ?g. }
- W2765898593 endingPage "93" @default.
- W2765898593 startingPage "61" @default.
- W2765898593 abstract "Cancer results from a complex interplay of different biological, chemical, and physical phenomena that span a wide range of time and length scales. Computational modeling may help to unfold the role of multiple evolving factors that exist and interact in the tumor microenvironment. Understanding these complex multiscale interactions is a crucial step toward predicting cancer growth and in developing effective therapies. We integrate different modeling approaches in a multiscale, avascular, hybrid tumor growth model encompassing tissue, cell, and sub-cell scales. At the tissue level, we consider the dispersion of nutrients and growth factors in the tumor microenvironment, which are modeled through reaction–diffusion equations. At the cell level, we use an agent-based model (ABM) to describe normal and tumor cell dynamics, with normal cells kept in homeostasis and cancer cells differentiated into quiescent, proliferative, migratory, apoptotic, hypoxic, and necrotic states. Cell movement is driven by the balance of a variety of forces according to Newton’s second law, including those related to growth-induced stresses. Phenotypic transitions are defined by specific rule of behaviors that depend on microenvironment stimuli. We integrate in each cell/agent a branch of the epidermal growth factor receptor (EGFR) pathway. This pathway is modeled by a system of coupled nonlinear differential equations involving the mass laws of 20 molecules. The rates of change in the concentration of some key molecules trigger proliferation or migration advantage response. The bridge between cell and tissue scales is built through the reaction and source terms of the partial differential equations. Our hybrid model is built in a modular way, enabling the investigation of the role of different mechanisms at multiple scales on tumor progression. This strategy allows representing both the collective behavior due to cell assembly as well as microscopic intracellular phenomena described by signal transduction pathways. Here, we investigate the impact of some mechanisms associated with sustained proliferation on cancer progression. Speci- fically, we focus on the intracellular proliferation/migration-advantage-response driven by the EGFR pathway and on proliferation inhibition due to accumulation of growth-induced stresses. Simulations demonstrate that the model can adequately describe some complex mechanisms of tumor dynamics, including growth arrest in avascular tumors. Both the sub-cell model and growth-induced stresses give rise to heterogeneity in the tumor expansion and a rich variety of tumor behaviors." @default.
- W2765898593 created "2017-11-10" @default.
- W2765898593 creator A5010007480 @default.
- W2765898593 creator A5027619317 @default.
- W2765898593 creator A5040009439 @default.
- W2765898593 creator A5051048073 @default.
- W2765898593 creator A5060145886 @default.
- W2765898593 creator A5072496760 @default.
- W2765898593 date "2017-12-13" @default.
- W2765898593 modified "2023-10-15" @default.
- W2765898593 title "A hybrid three-scale model of tumor growth" @default.
- W2765898593 cites W152116468 @default.
- W2765898593 cites W1965250829 @default.
- W2765898593 cites W1968877074 @default.
- W2765898593 cites W1974034376 @default.
- W2765898593 cites W1992478375 @default.
- W2765898593 cites W1996269383 @default.
- W2765898593 cites W1998266575 @default.
- W2765898593 cites W2001620484 @default.
- W2765898593 cites W200447247 @default.
- W2765898593 cites W2005912061 @default.
- W2765898593 cites W2008757142 @default.
- W2765898593 cites W2011826559 @default.
- W2765898593 cites W2013496530 @default.
- W2765898593 cites W2013945372 @default.
- W2765898593 cites W2029389605 @default.
- W2765898593 cites W2034269086 @default.
- W2765898593 cites W2038855506 @default.
- W2765898593 cites W2043967411 @default.
- W2765898593 cites W2052318766 @default.
- W2765898593 cites W2075161553 @default.
- W2765898593 cites W2075920390 @default.
- W2765898593 cites W2117692326 @default.
- W2765898593 cites W2125857415 @default.
- W2765898593 cites W2127225632 @default.
- W2765898593 cites W2129375080 @default.
- W2765898593 cites W2132192234 @default.
- W2765898593 cites W2142171814 @default.
- W2765898593 cites W2146839980 @default.
- W2765898593 cites W2148226311 @default.
- W2765898593 cites W2154718031 @default.
- W2765898593 cites W2158861081 @default.
- W2765898593 cites W2159084624 @default.
- W2765898593 cites W2160403387 @default.
- W2765898593 cites W2160425601 @default.
- W2765898593 cites W2161543607 @default.
- W2765898593 cites W2169961781 @default.
- W2765898593 cites W2237379835 @default.
- W2765898593 cites W2245948944 @default.
- W2765898593 cites W2333473394 @default.
- W2765898593 cites W2465605447 @default.
- W2765898593 cites W2478713206 @default.
- W2765898593 cites W2499795122 @default.
- W2765898593 cites W2567105886 @default.
- W2765898593 cites W4234794606 @default.
- W2765898593 cites W4244063180 @default.
- W2765898593 cites W4255002869 @default.
- W2765898593 doi "https://doi.org/10.1142/s0218202518500021" @default.
- W2765898593 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5773147" @default.
- W2765898593 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29353950" @default.
- W2765898593 hasPublicationYear "2017" @default.
- W2765898593 type Work @default.
- W2765898593 sameAs 2765898593 @default.
- W2765898593 citedByCount "32" @default.
- W2765898593 countsByYear W27658985932018 @default.
- W2765898593 countsByYear W27658985932019 @default.
- W2765898593 countsByYear W27658985932020 @default.
- W2765898593 countsByYear W27658985932021 @default.
- W2765898593 countsByYear W27658985932022 @default.
- W2765898593 countsByYear W27658985932023 @default.
- W2765898593 crossrefType "journal-article" @default.
- W2765898593 hasAuthorship W2765898593A5010007480 @default.
- W2765898593 hasAuthorship W2765898593A5027619317 @default.
- W2765898593 hasAuthorship W2765898593A5040009439 @default.
- W2765898593 hasAuthorship W2765898593A5051048073 @default.
- W2765898593 hasAuthorship W2765898593A5060145886 @default.
- W2765898593 hasAuthorship W2765898593A5072496760 @default.
- W2765898593 hasBestOaLocation W27658985932 @default.
- W2765898593 hasConcept C121332964 @default.
- W2765898593 hasConcept C121608353 @default.
- W2765898593 hasConcept C141123601 @default.
- W2765898593 hasConcept C158622935 @default.
- W2765898593 hasConcept C185592680 @default.
- W2765898593 hasConcept C186060115 @default.
- W2765898593 hasConcept C2776107976 @default.
- W2765898593 hasConcept C41008148 @default.
- W2765898593 hasConcept C54355233 @default.
- W2765898593 hasConcept C60644358 @default.
- W2765898593 hasConcept C62112901 @default.
- W2765898593 hasConcept C62520636 @default.
- W2765898593 hasConcept C86803240 @default.
- W2765898593 hasConcept C93779851 @default.
- W2765898593 hasConcept C96232424 @default.
- W2765898593 hasConceptScore W2765898593C121332964 @default.
- W2765898593 hasConceptScore W2765898593C121608353 @default.
- W2765898593 hasConceptScore W2765898593C141123601 @default.
- W2765898593 hasConceptScore W2765898593C158622935 @default.
- W2765898593 hasConceptScore W2765898593C185592680 @default.