Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765961489> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2765961489 abstract "MAP algorithm has outperformed in medical image reconstruction with noise suppression and edge preservation. However MAP-OSL algorithm could hardly apply a strong prior by using a large regularization parameter. In this study we proposed a MAP-Newton reconstruction framework to enable a strong prior to be applied in MAP optimization. EM iterative framework was used in MAP-Newton. In the step of maximizing expectation of the complete data log-likelihood function, MAP-Newton solves the non-linear equation accurately with Newton iterative algorithm, which is potentially better than approximate linearization method used in MAP-OSL. MAP-Newton reconstruction algorithm was implemented with both Bowsher's prior and joint total variation (JTV) prior based on anatomical image. 18F PET and CT data of an image-quality phantom were acquired on the small animal PET/SPECT/ CT Iniview 3000 system for performance evaluation. The priors with three different strength (regularization parameter was from 0.01 to 1.0) were applied in the list mode reconstruction studies with three noise levels (100 M, 12 M and 2 M LORs separately). The normalized standard derivation (NSTD) of region of interest was calculated. The results with Bowsher's prior for all noise level cases showed no significant difference between MAP-Newton and MAP-OSL when the regularization parameter was smaller than 1.0. When the parameter was set to be 1.0, the proposed MAP-Newton can greatly reduce NSTD with reasonable image quality although no reasonable images could be obtained with MAP-OSL. The results with JTV prior showed the same trend, except that increased regularization parameter did not reduce NSTD. In conclusion, with a strong prior, MAP-Newton can result in better image quality than MAP-OSL in terms of noise suppression, while no significant difference when applying a light prior. It indicated that the MAP-Newton reconstruction with a strong prior could be applied, when we have enough confidence on the prior." @default.
- W2765961489 created "2017-11-10" @default.
- W2765961489 creator A5006184812 @default.
- W2765961489 creator A5038239507 @default.
- W2765961489 creator A5047851681 @default.
- W2765961489 creator A5070211309 @default.
- W2765961489 creator A5074802964 @default.
- W2765961489 date "2016-10-01" @default.
- W2765961489 modified "2023-09-25" @default.
- W2765961489 title "Regularized MLEM reconstruction with a strong anatomical prior using newton iterative algorithm" @default.
- W2765961489 cites W1983757576 @default.
- W2765961489 cites W2130645492 @default.
- W2765961489 cites W2148956829 @default.
- W2765961489 cites W2168530812 @default.
- W2765961489 doi "https://doi.org/10.1109/nssmic.2016.8069510" @default.
- W2765961489 hasPublicationYear "2016" @default.
- W2765961489 type Work @default.
- W2765961489 sameAs 2765961489 @default.
- W2765961489 citedByCount "1" @default.
- W2765961489 countsByYear W27659614892021 @default.
- W2765961489 crossrefType "proceedings-article" @default.
- W2765961489 hasAuthorship W2765961489A5006184812 @default.
- W2765961489 hasAuthorship W2765961489A5038239507 @default.
- W2765961489 hasAuthorship W2765961489A5047851681 @default.
- W2765961489 hasAuthorship W2765961489A5070211309 @default.
- W2765961489 hasAuthorship W2765961489A5074802964 @default.
- W2765961489 hasConcept C104293457 @default.
- W2765961489 hasConcept C106430172 @default.
- W2765961489 hasConcept C107673813 @default.
- W2765961489 hasConcept C11210021 @default.
- W2765961489 hasConcept C11413529 @default.
- W2765961489 hasConcept C115961682 @default.
- W2765961489 hasConcept C121332964 @default.
- W2765961489 hasConcept C141379421 @default.
- W2765961489 hasConcept C154945302 @default.
- W2765961489 hasConcept C158622935 @default.
- W2765961489 hasConcept C159694833 @default.
- W2765961489 hasConcept C177769412 @default.
- W2765961489 hasConcept C207282899 @default.
- W2765961489 hasConcept C2776135515 @default.
- W2765961489 hasConcept C2989005 @default.
- W2765961489 hasConcept C33923547 @default.
- W2765961489 hasConcept C41008148 @default.
- W2765961489 hasConcept C55020928 @default.
- W2765961489 hasConcept C62520636 @default.
- W2765961489 hasConcept C71924100 @default.
- W2765961489 hasConcept C85189116 @default.
- W2765961489 hasConcept C9417928 @default.
- W2765961489 hasConcept C99498987 @default.
- W2765961489 hasConceptScore W2765961489C104293457 @default.
- W2765961489 hasConceptScore W2765961489C106430172 @default.
- W2765961489 hasConceptScore W2765961489C107673813 @default.
- W2765961489 hasConceptScore W2765961489C11210021 @default.
- W2765961489 hasConceptScore W2765961489C11413529 @default.
- W2765961489 hasConceptScore W2765961489C115961682 @default.
- W2765961489 hasConceptScore W2765961489C121332964 @default.
- W2765961489 hasConceptScore W2765961489C141379421 @default.
- W2765961489 hasConceptScore W2765961489C154945302 @default.
- W2765961489 hasConceptScore W2765961489C158622935 @default.
- W2765961489 hasConceptScore W2765961489C159694833 @default.
- W2765961489 hasConceptScore W2765961489C177769412 @default.
- W2765961489 hasConceptScore W2765961489C207282899 @default.
- W2765961489 hasConceptScore W2765961489C2776135515 @default.
- W2765961489 hasConceptScore W2765961489C2989005 @default.
- W2765961489 hasConceptScore W2765961489C33923547 @default.
- W2765961489 hasConceptScore W2765961489C41008148 @default.
- W2765961489 hasConceptScore W2765961489C55020928 @default.
- W2765961489 hasConceptScore W2765961489C62520636 @default.
- W2765961489 hasConceptScore W2765961489C71924100 @default.
- W2765961489 hasConceptScore W2765961489C85189116 @default.
- W2765961489 hasConceptScore W2765961489C9417928 @default.
- W2765961489 hasConceptScore W2765961489C99498987 @default.
- W2765961489 hasLocation W27659614891 @default.
- W2765961489 hasOpenAccess W2765961489 @default.
- W2765961489 hasPrimaryLocation W27659614891 @default.
- W2765961489 hasRelatedWork W1716278069 @default.
- W2765961489 hasRelatedWork W1982438520 @default.
- W2765961489 hasRelatedWork W2004999424 @default.
- W2765961489 hasRelatedWork W2019186334 @default.
- W2765961489 hasRelatedWork W2040008776 @default.
- W2765961489 hasRelatedWork W2051916547 @default.
- W2765961489 hasRelatedWork W2070369771 @default.
- W2765961489 hasRelatedWork W2102346612 @default.
- W2765961489 hasRelatedWork W2127642613 @default.
- W2765961489 hasRelatedWork W2145440478 @default.
- W2765961489 hasRelatedWork W2281206237 @default.
- W2765961489 hasRelatedWork W2375917833 @default.
- W2765961489 hasRelatedWork W2393011109 @default.
- W2765961489 hasRelatedWork W2466106905 @default.
- W2765961489 hasRelatedWork W2541685626 @default.
- W2765961489 hasRelatedWork W2542563491 @default.
- W2765961489 hasRelatedWork W2544584343 @default.
- W2765961489 hasRelatedWork W2891941676 @default.
- W2765961489 hasRelatedWork W2981408934 @default.
- W2765961489 hasRelatedWork W3109259988 @default.
- W2765961489 isParatext "false" @default.
- W2765961489 isRetracted "false" @default.
- W2765961489 magId "2765961489" @default.
- W2765961489 workType "article" @default.