Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765982207> ?p ?o ?g. }
- W2765982207 endingPage "2164" @default.
- W2765982207 startingPage "2127" @default.
- W2765982207 abstract "Classical studies of chaos in the well-known Lorenz system are based on reduction to the one-dimensional Lorenz map, which captures the full behavior of the dynamics of the chaotic Lorenz attractor. This reduction requires that the stable and unstable foliations in a particular Poincaré section are transverse locally near the chaotic Lorenz attractor. We study when this so-called foliation condition fails for the first time and the classic Lorenz attractor becomes a quasi-attractor. This transition is characterized by the creation of tangencies between the stable and unstable foliations and the appearance of hooked horseshoes in the Poincaré return map. We consider how the three-dimensional phase space is organized by the global invariant manifolds of saddle equilibria and saddle periodic orbits---before and after the loss of the foliation condition. We compute these global objects as families of orbit segments, which are found by setting up a suitable two-point boundary value problem (BVP). We then formulate a multi-segment BVP to find the first tangency between the stable foliation and the intersection curves in the Poincaré section of the two-dimensional unstable manifold of a periodic orbit. It is a distinct advantage of our BVP setup that we are able to detect and readily continue the locus of first foliation tangency in any plane of two parameters as part of the overall bifurcation diagram. Our computations show that the region of existence of the classic Lorenz attractor is bounded in each parameter plane. It forms a slanted (unbounded) cone in the three-parameter space with a curve of terminal-point, or T-point, bifurcations on the locus of first foliation tangency; we identify the tip of this cone as a codimension-three T-point-Hopf bifurcation point, where the curve of T-point bifurcations meets a surface of Hopf bifurcation. Moreover, we are able to find other first foliation tangencies for larger values of the parameters that are associated with additional T-point bifurcations: each tangency adds an extra twist to the central region of the quasi-attractor." @default.
- W2765982207 created "2017-11-10" @default.
- W2765982207 creator A5013788908 @default.
- W2765982207 creator A5072817844 @default.
- W2765982207 creator A5078314587 @default.
- W2765982207 date "2017-01-01" @default.
- W2765982207 modified "2023-10-16" @default.
- W2765982207 title "Finding First Foliation Tangencies in the Lorenz System" @default.
- W2765982207 cites W1966493349 @default.
- W2765982207 cites W1967008192 @default.
- W2765982207 cites W1970016470 @default.
- W2765982207 cites W1970497684 @default.
- W2765982207 cites W1976099504 @default.
- W2765982207 cites W1983996787 @default.
- W2765982207 cites W1995287688 @default.
- W2765982207 cites W2003884541 @default.
- W2765982207 cites W2006642504 @default.
- W2765982207 cites W2019398782 @default.
- W2765982207 cites W2019684585 @default.
- W2765982207 cites W2028323882 @default.
- W2765982207 cites W2029904628 @default.
- W2765982207 cites W2034358049 @default.
- W2765982207 cites W2037279909 @default.
- W2765982207 cites W2038032107 @default.
- W2765982207 cites W2043122468 @default.
- W2765982207 cites W2047395157 @default.
- W2765982207 cites W2047668433 @default.
- W2765982207 cites W2049119403 @default.
- W2765982207 cites W2052257652 @default.
- W2765982207 cites W2059356922 @default.
- W2765982207 cites W2064767972 @default.
- W2765982207 cites W2067307773 @default.
- W2765982207 cites W2077157707 @default.
- W2765982207 cites W2080895663 @default.
- W2765982207 cites W2084882300 @default.
- W2765982207 cites W2092216631 @default.
- W2765982207 cites W2094871671 @default.
- W2765982207 cites W2095587901 @default.
- W2765982207 cites W2103299535 @default.
- W2765982207 cites W2115916301 @default.
- W2765982207 cites W2118884582 @default.
- W2765982207 cites W2119331844 @default.
- W2765982207 cites W2119779417 @default.
- W2765982207 cites W2125566231 @default.
- W2765982207 cites W2128018231 @default.
- W2765982207 cites W2141394518 @default.
- W2765982207 cites W2159381661 @default.
- W2765982207 cites W2243481998 @default.
- W2765982207 cites W2319862208 @default.
- W2765982207 cites W2325990798 @default.
- W2765982207 cites W2592370375 @default.
- W2765982207 cites W3100115818 @default.
- W2765982207 cites W3102070185 @default.
- W2765982207 cites W4234284487 @default.
- W2765982207 doi "https://doi.org/10.1137/17m1112716" @default.
- W2765982207 hasPublicationYear "2017" @default.
- W2765982207 type Work @default.
- W2765982207 sameAs 2765982207 @default.
- W2765982207 citedByCount "12" @default.
- W2765982207 countsByYear W27659822072018 @default.
- W2765982207 countsByYear W27659822072019 @default.
- W2765982207 countsByYear W27659822072020 @default.
- W2765982207 countsByYear W27659822072021 @default.
- W2765982207 countsByYear W27659822072022 @default.
- W2765982207 crossrefType "journal-article" @default.
- W2765982207 hasAuthorship W2765982207A5013788908 @default.
- W2765982207 hasAuthorship W2765982207A5072817844 @default.
- W2765982207 hasAuthorship W2765982207A5078314587 @default.
- W2765982207 hasBestOaLocation W27659822071 @default.
- W2765982207 hasConcept C121332964 @default.
- W2765982207 hasConcept C126255220 @default.
- W2765982207 hasConcept C127313418 @default.
- W2765982207 hasConcept C134306372 @default.
- W2765982207 hasConcept C138187205 @default.
- W2765982207 hasConcept C151342819 @default.
- W2765982207 hasConcept C151510863 @default.
- W2765982207 hasConcept C154945302 @default.
- W2765982207 hasConcept C158622935 @default.
- W2765982207 hasConcept C164380108 @default.
- W2765982207 hasConcept C164660894 @default.
- W2765982207 hasConcept C168425004 @default.
- W2765982207 hasConcept C17409809 @default.
- W2765982207 hasConcept C190470478 @default.
- W2765982207 hasConcept C200581526 @default.
- W2765982207 hasConcept C21955772 @default.
- W2765982207 hasConcept C2524010 @default.
- W2765982207 hasConcept C26687426 @default.
- W2765982207 hasConcept C2777052490 @default.
- W2765982207 hasConcept C2777127463 @default.
- W2765982207 hasConcept C2781349735 @default.
- W2765982207 hasConcept C33923547 @default.
- W2765982207 hasConcept C34388435 @default.
- W2765982207 hasConcept C37914503 @default.
- W2765982207 hasConcept C41008148 @default.
- W2765982207 hasConcept C50429861 @default.
- W2765982207 hasConcept C61445026 @default.
- W2765982207 hasConcept C62520636 @default.
- W2765982207 hasConcept C78302928 @default.