Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765985277> ?p ?o ?g. }
- W2765985277 endingPage "484" @default.
- W2765985277 startingPage "467" @default.
- W2765985277 abstract "Hyperacid brines from active volcanic lakes are some of the chemically most complex aqueous solutions on Earth. Their compositions provide valuable insights into processes of elemental transfer from a magma body to the surface and interactions with solid rocks and the atmosphere. This paper describes changes in chemical and δ37Cl signatures observed in a 1750 h isothermal evaporation experiment on hyperacid (pH 0.1) sulphate-chloride brine water from the active lake of Kawah Ijen volcano (Indonesia). Although gypsum was the only evaporite mineral identified in the evolving brine, decreasing Si concentrations may ultimately result in amorphous silica precipitation. Geochemical simulations predict the additional formation of elemental sulphur at lower water activities (aH2O ≤ 0.65) that were not reached in the experiment. Absence of other sulphates and halides despite the high load of dissolved elements (initial TDS ca. 100 g/kg) can be attributed to increased solubility of metals, promoted by extensive formation of complexes between the variety of cations and the major anions (HSO4−, Cl−, F−) present. Chlorine deviations from a conservative behaviour point to losses of gaseous hydrogen chloride (HCl(g)) and consequently an increase in Br/Cl ratios. Chlorine isotope fractionation that accompanied the escape of HCl(g) showed a marked change in sign and magnitude in the course of progressive evaporation of the brine. The calculated factor of fractionation between HCl(g) and dissolved Cl for the initial interval (before 500 h) is positive (1000lnαHCl(g)-Cldiss.=+1.55±0.49‰to+3.37±1.11‰), indicating that, at first, the escaping HCl(g) was isotopically heavier than the dissolved Cl remaining in the brine. Conversely, fractionation shifted to the opposite direction in the subsequent interval (1000lnαHCl(g)-Cldiss.=5.67±0.17‰to-5.64±0.08‰), in agreement with values reported in literature. It is proposed that Cl isotopic fractionation in highly acidic brines is controlled by the distribution of dissolved chlorine species, which changes from Cl− to HClo dominance with the progressive pH decline. The Kawah Ijen lake acquired its extreme composition through influx of sulphur and halogen-rich magmatic gas components and extensive rock dissolution. If hyperacid brines with comparable chemical composition existed on Mars, evaporation processes up to the extent reported here (aH2O=0.85), were likely accompanied by losses of gaseous HCl. The resulting changes in Cl isotope compositions, Br/Cl, S/Cl and other ratios in the residual brine might be potentially recorded in assemblages of halogen-bearing secondary evaporation minerals. Also, volcanic-hydrothermal brines as these would extend the stability of liquid water on the Martian surface down to a temperature of −90 °C." @default.
- W2765985277 created "2017-11-10" @default.
- W2765985277 creator A5007307854 @default.
- W2765985277 creator A5079765388 @default.
- W2765985277 creator A5091796517 @default.
- W2765985277 date "2018-02-01" @default.
- W2765985277 modified "2023-10-18" @default.
- W2765985277 title "Experimental evaporation of hyperacid brines: Effects on chemical composition and chlorine isotope fractionation" @default.
- W2765985277 cites W1965846259 @default.
- W2765985277 cites W1966837023 @default.
- W2765985277 cites W1967750735 @default.
- W2765985277 cites W1975801642 @default.
- W2765985277 cites W1996432448 @default.
- W2765985277 cites W2001446794 @default.
- W2765985277 cites W2001955812 @default.
- W2765985277 cites W2002948237 @default.
- W2765985277 cites W2005617279 @default.
- W2765985277 cites W2005760474 @default.
- W2765985277 cites W2006614688 @default.
- W2765985277 cites W2009172246 @default.
- W2765985277 cites W2010139381 @default.
- W2765985277 cites W2010353627 @default.
- W2765985277 cites W2012167993 @default.
- W2765985277 cites W2013882840 @default.
- W2765985277 cites W2015398498 @default.
- W2765985277 cites W2016573964 @default.
- W2765985277 cites W2021817299 @default.
- W2765985277 cites W2024393273 @default.
- W2765985277 cites W2026006742 @default.
- W2765985277 cites W2034937854 @default.
- W2765985277 cites W2035897591 @default.
- W2765985277 cites W2040473201 @default.
- W2765985277 cites W2041532412 @default.
- W2765985277 cites W2052933877 @default.
- W2765985277 cites W2054220138 @default.
- W2765985277 cites W2056891847 @default.
- W2765985277 cites W2063873225 @default.
- W2765985277 cites W2065869762 @default.
- W2765985277 cites W2067640311 @default.
- W2765985277 cites W2068159014 @default.
- W2765985277 cites W2068726779 @default.
- W2765985277 cites W2074118446 @default.
- W2765985277 cites W2082219176 @default.
- W2765985277 cites W2083466088 @default.
- W2765985277 cites W2083795557 @default.
- W2765985277 cites W2088788855 @default.
- W2765985277 cites W2091321670 @default.
- W2765985277 cites W2091322863 @default.
- W2765985277 cites W2097301043 @default.
- W2765985277 cites W2101668682 @default.
- W2765985277 cites W2108366273 @default.
- W2765985277 cites W2109459880 @default.
- W2765985277 cites W2112953462 @default.
- W2765985277 cites W2114331726 @default.
- W2765985277 cites W2117325609 @default.
- W2765985277 cites W2118236893 @default.
- W2765985277 cites W2118453674 @default.
- W2765985277 cites W2143426699 @default.
- W2765985277 cites W2144965538 @default.
- W2765985277 cites W2145646198 @default.
- W2765985277 cites W2160584221 @default.
- W2765985277 cites W2165943580 @default.
- W2765985277 cites W2169022577 @default.
- W2765985277 cites W2246577281 @default.
- W2765985277 cites W2282855470 @default.
- W2765985277 cites W2298722528 @default.
- W2765985277 cites W2311738139 @default.
- W2765985277 cites W2318736561 @default.
- W2765985277 cites W2327811049 @default.
- W2765985277 cites W2334699215 @default.
- W2765985277 cites W2347150996 @default.
- W2765985277 cites W2403204410 @default.
- W2765985277 cites W2415894468 @default.
- W2765985277 cites W2550111469 @default.
- W2765985277 cites W2554659473 @default.
- W2765985277 cites W2589224858 @default.
- W2765985277 cites W2604690099 @default.
- W2765985277 cites W2606209987 @default.
- W2765985277 cites W2750496111 @default.
- W2765985277 cites W4242588965 @default.
- W2765985277 cites W4248047904 @default.
- W2765985277 doi "https://doi.org/10.1016/j.gca.2017.10.032" @default.
- W2765985277 hasPublicationYear "2018" @default.
- W2765985277 type Work @default.
- W2765985277 sameAs 2765985277 @default.
- W2765985277 citedByCount "12" @default.
- W2765985277 countsByYear W27659852772018 @default.
- W2765985277 countsByYear W27659852772019 @default.
- W2765985277 countsByYear W27659852772020 @default.
- W2765985277 countsByYear W27659852772021 @default.
- W2765985277 countsByYear W27659852772022 @default.
- W2765985277 countsByYear W27659852772023 @default.
- W2765985277 crossrefType "journal-article" @default.
- W2765985277 hasAuthorship W2765985277A5007307854 @default.
- W2765985277 hasAuthorship W2765985277A5079765388 @default.
- W2765985277 hasAuthorship W2765985277A5091796517 @default.
- W2765985277 hasBestOaLocation W27659852772 @default.
- W2765985277 hasConcept C127313418 @default.