Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766014129> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2766014129 abstract "In recent times, the number of cybercrimes against cloud systems and services is rapidly growing. Although, there are numerous protection systems such as firewalls and intrusion detection and prevention system, and anti-viruses that are developed to protect cloud infrastructures and services from severe attacks, but still the risk of criminal activities exists. This lead to attract the attention of researchers and scientists around the world to digital forensic which is a science to aid law enforcement officers and digital investigator to identify, collect and analyze digital footprints or evidence which are collected from a crime scene. One of the significant sources of as a digital evidence in the cloud is log data because they frequently connect events in certain time. The process of log data forensics mitigates the investigation process by identifying the malicious behavior and reveal the hidden malicious activities. Cloud log analysis can help to reconstruct cybercrime events which occurred in the cloud. Traditional log data analysis procedures and tools can be adapted to cloud through using new fast on memory computing platforms such as Apache Spark. Spark is a general-purpose cluster-computing engine, which is very fast and reliable. This paper presents analysis approach for batch and stream log data using Apache Spark. The results show that Spark can be used as a fast platform for handling the diverse large size of log data and extract useful information that can assist digital investigators in the analysis immense amount of generated cloud log data in a given frame of time. Furthermore, the results can make provision to reconstruct and generate a timeline related to historical past sequence events occurred during a cloud crime as well as identify the malicious user's IP address, date and time, with a number of accesses." @default.
- W2766014129 created "2017-11-10" @default.
- W2766014129 creator A5050772292 @default.
- W2766014129 creator A5066571254 @default.
- W2766014129 date "2017-04-01" @default.
- W2766014129 modified "2023-09-27" @default.
- W2766014129 title "Spark-based log data analysis for reconstruction of cybercrime events in cloud environment" @default.
- W2766014129 cites W1993237969 @default.
- W2766014129 cites W2132775939 @default.
- W2766014129 cites W2330348401 @default.
- W2766014129 doi "https://doi.org/10.1109/iccpct.2017.8074209" @default.
- W2766014129 hasPublicationYear "2017" @default.
- W2766014129 type Work @default.
- W2766014129 sameAs 2766014129 @default.
- W2766014129 citedByCount "6" @default.
- W2766014129 countsByYear W27660141292019 @default.
- W2766014129 countsByYear W27660141292021 @default.
- W2766014129 countsByYear W27660141292022 @default.
- W2766014129 countsByYear W27660141292023 @default.
- W2766014129 crossrefType "proceedings-article" @default.
- W2766014129 hasAuthorship W2766014129A5050772292 @default.
- W2766014129 hasAuthorship W2766014129A5066571254 @default.
- W2766014129 hasConcept C110875604 @default.
- W2766014129 hasConcept C111919701 @default.
- W2766014129 hasConcept C136764020 @default.
- W2766014129 hasConcept C17744445 @default.
- W2766014129 hasConcept C183469790 @default.
- W2766014129 hasConcept C199360897 @default.
- W2766014129 hasConcept C199539241 @default.
- W2766014129 hasConcept C2778864079 @default.
- W2766014129 hasConcept C2779390178 @default.
- W2766014129 hasConcept C2780262971 @default.
- W2766014129 hasConcept C2781215313 @default.
- W2766014129 hasConcept C2781357168 @default.
- W2766014129 hasConcept C31258907 @default.
- W2766014129 hasConcept C38652104 @default.
- W2766014129 hasConcept C41008148 @default.
- W2766014129 hasConcept C557945733 @default.
- W2766014129 hasConcept C79974875 @default.
- W2766014129 hasConcept C84418412 @default.
- W2766014129 hasConcept C98045186 @default.
- W2766014129 hasConceptScore W2766014129C110875604 @default.
- W2766014129 hasConceptScore W2766014129C111919701 @default.
- W2766014129 hasConceptScore W2766014129C136764020 @default.
- W2766014129 hasConceptScore W2766014129C17744445 @default.
- W2766014129 hasConceptScore W2766014129C183469790 @default.
- W2766014129 hasConceptScore W2766014129C199360897 @default.
- W2766014129 hasConceptScore W2766014129C199539241 @default.
- W2766014129 hasConceptScore W2766014129C2778864079 @default.
- W2766014129 hasConceptScore W2766014129C2779390178 @default.
- W2766014129 hasConceptScore W2766014129C2780262971 @default.
- W2766014129 hasConceptScore W2766014129C2781215313 @default.
- W2766014129 hasConceptScore W2766014129C2781357168 @default.
- W2766014129 hasConceptScore W2766014129C31258907 @default.
- W2766014129 hasConceptScore W2766014129C38652104 @default.
- W2766014129 hasConceptScore W2766014129C41008148 @default.
- W2766014129 hasConceptScore W2766014129C557945733 @default.
- W2766014129 hasConceptScore W2766014129C79974875 @default.
- W2766014129 hasConceptScore W2766014129C84418412 @default.
- W2766014129 hasConceptScore W2766014129C98045186 @default.
- W2766014129 hasLocation W27660141291 @default.
- W2766014129 hasOpenAccess W2766014129 @default.
- W2766014129 hasPrimaryLocation W27660141291 @default.
- W2766014129 hasRelatedWork W1576621636 @default.
- W2766014129 hasRelatedWork W2102414025 @default.
- W2766014129 hasRelatedWork W2599243786 @default.
- W2766014129 hasRelatedWork W2914381632 @default.
- W2766014129 hasRelatedWork W2943306894 @default.
- W2766014129 hasRelatedWork W2999986322 @default.
- W2766014129 hasRelatedWork W3015503851 @default.
- W2766014129 hasRelatedWork W4229673363 @default.
- W2766014129 hasRelatedWork W4292622130 @default.
- W2766014129 hasRelatedWork W2181487992 @default.
- W2766014129 isParatext "false" @default.
- W2766014129 isRetracted "false" @default.
- W2766014129 magId "2766014129" @default.
- W2766014129 workType "article" @default.