Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766101120> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2766101120 abstract "This paper presents a unified deep learning framework to recover hyperspectral images from spectrally undersampled projections. Specifically, we investigate two kinds of representative projections, RGB and compressive sensing (CS) measurements. These measurements are first upsampled in the spectral dimension through simple interpolation or CS reconstruction, and the proposed method learns an end-to-end mapping from a large number of up-sampled/groundtruth hyperspectral image pairs. The mapping is represented as a deep convolutional neural network (CNN) that takes the spectrally upsampled image as input and outputs the enhanced hyperspetral one. We explore different network configurations to achieve high reconstruction fidelity. Experimental results on a variety of test images demonstrate significantly improved performance of the proposed method over the state-of-the-arts." @default.
- W2766101120 created "2017-11-10" @default.
- W2766101120 creator A5008612863 @default.
- W2766101120 creator A5019918709 @default.
- W2766101120 creator A5029102289 @default.
- W2766101120 creator A5056036725 @default.
- W2766101120 creator A5073149771 @default.
- W2766101120 creator A5086314063 @default.
- W2766101120 date "2017-10-01" @default.
- W2766101120 modified "2023-10-16" @default.
- W2766101120 title "HSCNN: CNN-Based Hyperspectral Image Recovery from Spectrally Undersampled Projections" @default.
- W2766101120 cites W1885185971 @default.
- W2766101120 cites W1894463949 @default.
- W2766101120 cites W1984864470 @default.
- W2766101120 cites W1985051078 @default.
- W2766101120 cites W2010797000 @default.
- W2766101120 cites W2012761844 @default.
- W2766101120 cites W2013482901 @default.
- W2766101120 cites W2028349405 @default.
- W2766101120 cites W2030270830 @default.
- W2766101120 cites W2070615500 @default.
- W2766101120 cites W2073362905 @default.
- W2766101120 cites W2079319869 @default.
- W2766101120 cites W2080630433 @default.
- W2766101120 cites W2084591647 @default.
- W2766101120 cites W2109149397 @default.
- W2766101120 cites W2120478201 @default.
- W2766101120 cites W2135364872 @default.
- W2766101120 cites W2144412886 @default.
- W2766101120 cites W2145096794 @default.
- W2766101120 cites W2154761409 @default.
- W2766101120 cites W2166785998 @default.
- W2766101120 cites W2169832615 @default.
- W2766101120 cites W2242218935 @default.
- W2766101120 cites W2520430674 @default.
- W2766101120 cites W4250955649 @default.
- W2766101120 doi "https://doi.org/10.1109/iccvw.2017.68" @default.
- W2766101120 hasPublicationYear "2017" @default.
- W2766101120 type Work @default.
- W2766101120 sameAs 2766101120 @default.
- W2766101120 citedByCount "111" @default.
- W2766101120 countsByYear W27661011202018 @default.
- W2766101120 countsByYear W27661011202019 @default.
- W2766101120 countsByYear W27661011202020 @default.
- W2766101120 countsByYear W27661011202021 @default.
- W2766101120 countsByYear W27661011202022 @default.
- W2766101120 countsByYear W27661011202023 @default.
- W2766101120 crossrefType "proceedings-article" @default.
- W2766101120 hasAuthorship W2766101120A5008612863 @default.
- W2766101120 hasAuthorship W2766101120A5019918709 @default.
- W2766101120 hasAuthorship W2766101120A5029102289 @default.
- W2766101120 hasAuthorship W2766101120A5056036725 @default.
- W2766101120 hasAuthorship W2766101120A5073149771 @default.
- W2766101120 hasAuthorship W2766101120A5086314063 @default.
- W2766101120 hasConcept C108583219 @default.
- W2766101120 hasConcept C115961682 @default.
- W2766101120 hasConcept C137800194 @default.
- W2766101120 hasConcept C141379421 @default.
- W2766101120 hasConcept C153180895 @default.
- W2766101120 hasConcept C154945302 @default.
- W2766101120 hasConcept C159078339 @default.
- W2766101120 hasConcept C31972630 @default.
- W2766101120 hasConcept C41008148 @default.
- W2766101120 hasConcept C81363708 @default.
- W2766101120 hasConcept C82990744 @default.
- W2766101120 hasConceptScore W2766101120C108583219 @default.
- W2766101120 hasConceptScore W2766101120C115961682 @default.
- W2766101120 hasConceptScore W2766101120C137800194 @default.
- W2766101120 hasConceptScore W2766101120C141379421 @default.
- W2766101120 hasConceptScore W2766101120C153180895 @default.
- W2766101120 hasConceptScore W2766101120C154945302 @default.
- W2766101120 hasConceptScore W2766101120C159078339 @default.
- W2766101120 hasConceptScore W2766101120C31972630 @default.
- W2766101120 hasConceptScore W2766101120C41008148 @default.
- W2766101120 hasConceptScore W2766101120C81363708 @default.
- W2766101120 hasConceptScore W2766101120C82990744 @default.
- W2766101120 hasLocation W27661011201 @default.
- W2766101120 hasOpenAccess W2766101120 @default.
- W2766101120 hasPrimaryLocation W27661011201 @default.
- W2766101120 hasRelatedWork W2019190440 @default.
- W2766101120 hasRelatedWork W2027399350 @default.
- W2766101120 hasRelatedWork W2044184146 @default.
- W2766101120 hasRelatedWork W2060875994 @default.
- W2766101120 hasRelatedWork W2070598848 @default.
- W2766101120 hasRelatedWork W2072166414 @default.
- W2766101120 hasRelatedWork W3034375524 @default.
- W2766101120 hasRelatedWork W3034864990 @default.
- W2766101120 hasRelatedWork W3209970181 @default.
- W2766101120 hasRelatedWork W4230131218 @default.
- W2766101120 isParatext "false" @default.
- W2766101120 isRetracted "false" @default.
- W2766101120 magId "2766101120" @default.
- W2766101120 workType "article" @default.