Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766144513> ?p ?o ?g. }
- W2766144513 abstract "This paper is concerned of the loop closure detection problem, which is one of the most critical parts for visual Simultaneous Localization and Mapping (SLAM) systems. Most of state-of-the-art methods use hand-crafted features and bag-of-visual-words (BoVW) to tackle this problem. Recent development in deep learning indicates that CNN features significantly outperform hand-crafted features for image representation. This advanced technology has not been fully exploited in robotics, especially in visual SLAM systems. We propose a loop closure detection method based on convolutional neural networks (CNNs). Images are fed into a pre-trained CNN model to extract features. We pre-process CNN features instead of using them directly as most of the presented approaches did before they are used to detect loops. The workflow of extracting CNN features, processing data, computing similarity score and detecting loops is presented. Finally the performance of proposed method is evaluated on several open datasets by comparing it with Fab-Map using precision-recall metric." @default.
- W2766144513 created "2017-11-10" @default.
- W2766144513 creator A5023022769 @default.
- W2766144513 creator A5029830698 @default.
- W2766144513 creator A5079784307 @default.
- W2766144513 date "2017-09-01" @default.
- W2766144513 modified "2023-10-04" @default.
- W2766144513 title "Loop closure detection for visual SLAM systems using convolutional neural network" @default.
- W2766144513 cites W1162411702 @default.
- W2766144513 cites W1491719799 @default.
- W2766144513 cites W1552030383 @default.
- W2766144513 cites W1677409904 @default.
- W2766144513 cites W1679894842 @default.
- W2766144513 cites W1703761565 @default.
- W2766144513 cites W1968771169 @default.
- W2766144513 cites W1974093076 @default.
- W2766144513 cites W1989484209 @default.
- W2766144513 cites W204268067 @default.
- W2766144513 cites W2062118960 @default.
- W2766144513 cites W2108598243 @default.
- W2766144513 cites W2110405746 @default.
- W2766144513 cites W2114594485 @default.
- W2766144513 cites W2117228865 @default.
- W2766144513 cites W2131846894 @default.
- W2766144513 cites W2132311402 @default.
- W2766144513 cites W2144824356 @default.
- W2766144513 cites W2151103935 @default.
- W2766144513 cites W2152671441 @default.
- W2766144513 cites W2155893237 @default.
- W2766144513 cites W2163922914 @default.
- W2766144513 cites W2290577462 @default.
- W2766144513 cites W2919115771 @default.
- W2766144513 cites W2951019013 @default.
- W2766144513 cites W301022506 @default.
- W2766144513 cites W3103648783 @default.
- W2766144513 doi "https://doi.org/10.23919/iconac.2017.8082072" @default.
- W2766144513 hasPublicationYear "2017" @default.
- W2766144513 type Work @default.
- W2766144513 sameAs 2766144513 @default.
- W2766144513 citedByCount "40" @default.
- W2766144513 countsByYear W27661445132018 @default.
- W2766144513 countsByYear W27661445132019 @default.
- W2766144513 countsByYear W27661445132020 @default.
- W2766144513 countsByYear W27661445132021 @default.
- W2766144513 countsByYear W27661445132022 @default.
- W2766144513 countsByYear W27661445132023 @default.
- W2766144513 crossrefType "proceedings-article" @default.
- W2766144513 hasAuthorship W2766144513A5023022769 @default.
- W2766144513 hasAuthorship W2766144513A5029830698 @default.
- W2766144513 hasAuthorship W2766144513A5079784307 @default.
- W2766144513 hasConcept C103278499 @default.
- W2766144513 hasConcept C108583219 @default.
- W2766144513 hasConcept C111919701 @default.
- W2766144513 hasConcept C114614502 @default.
- W2766144513 hasConcept C115961682 @default.
- W2766144513 hasConcept C153180895 @default.
- W2766144513 hasConcept C154945302 @default.
- W2766144513 hasConcept C162324750 @default.
- W2766144513 hasConcept C1667742 @default.
- W2766144513 hasConcept C167611913 @default.
- W2766144513 hasConcept C176217482 @default.
- W2766144513 hasConcept C177212765 @default.
- W2766144513 hasConcept C17744445 @default.
- W2766144513 hasConcept C184670325 @default.
- W2766144513 hasConcept C189391414 @default.
- W2766144513 hasConcept C199539241 @default.
- W2766144513 hasConcept C19966478 @default.
- W2766144513 hasConcept C21547014 @default.
- W2766144513 hasConcept C2776359362 @default.
- W2766144513 hasConcept C2779624466 @default.
- W2766144513 hasConcept C31972630 @default.
- W2766144513 hasConcept C33923547 @default.
- W2766144513 hasConcept C36464697 @default.
- W2766144513 hasConcept C41008148 @default.
- W2766144513 hasConcept C77088390 @default.
- W2766144513 hasConcept C81363708 @default.
- W2766144513 hasConcept C81669768 @default.
- W2766144513 hasConcept C86369673 @default.
- W2766144513 hasConcept C90509273 @default.
- W2766144513 hasConcept C94625758 @default.
- W2766144513 hasConcept C98045186 @default.
- W2766144513 hasConceptScore W2766144513C103278499 @default.
- W2766144513 hasConceptScore W2766144513C108583219 @default.
- W2766144513 hasConceptScore W2766144513C111919701 @default.
- W2766144513 hasConceptScore W2766144513C114614502 @default.
- W2766144513 hasConceptScore W2766144513C115961682 @default.
- W2766144513 hasConceptScore W2766144513C153180895 @default.
- W2766144513 hasConceptScore W2766144513C154945302 @default.
- W2766144513 hasConceptScore W2766144513C162324750 @default.
- W2766144513 hasConceptScore W2766144513C1667742 @default.
- W2766144513 hasConceptScore W2766144513C167611913 @default.
- W2766144513 hasConceptScore W2766144513C176217482 @default.
- W2766144513 hasConceptScore W2766144513C177212765 @default.
- W2766144513 hasConceptScore W2766144513C17744445 @default.
- W2766144513 hasConceptScore W2766144513C184670325 @default.
- W2766144513 hasConceptScore W2766144513C189391414 @default.
- W2766144513 hasConceptScore W2766144513C199539241 @default.
- W2766144513 hasConceptScore W2766144513C19966478 @default.
- W2766144513 hasConceptScore W2766144513C21547014 @default.
- W2766144513 hasConceptScore W2766144513C2776359362 @default.