Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766163375> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2766163375 abstract "Previous models for learning entity and relationship embeddings of knowledge graphs such as TransE, TransH, and TransR aim to explore new links based on learned representations. However, these models interpret relationships as simple translations on entity embeddings. In this paper, we try to learn more complex connections between entities and relationships. In particular, we use a Convolutional Neural Network (CNN) to learn entity and relationship representations in knowledge graphs. In our model, we treat entities and relationships as one-dimensional numerical sequences with the same length. After that, we combine each triplet of head, relationship, and tail together as a matrix with height 3. CNN is applied to the triplets to get confidence scores. Positive and manually corrupted negative triplets are used to train the embeddings and the CNN model simultaneously. Experimental results on public benchmark datasets show that the proposed model outperforms state-of-the-art models on exploring unseen relationships, which proves that CNN is effective to learn complex interactive patterns between entities and relationships." @default.
- W2766163375 created "2017-11-10" @default.
- W2766163375 creator A5022877637 @default.
- W2766163375 creator A5048043105 @default.
- W2766163375 creator A5065576006 @default.
- W2766163375 creator A5070550789 @default.
- W2766163375 date "2017-10-23" @default.
- W2766163375 modified "2023-10-11" @default.
- W2766163375 title "Convolutional Neural Knowledge Graph Learning" @default.
- W2766163375 cites W1529533208 @default.
- W2766163375 cites W1552847225 @default.
- W2766163375 cites W2081580037 @default.
- W2766163375 cites W2127795553 @default.
- W2766163375 cites W2184957013 @default.
- W2766163375 cites W2247119764 @default.
- W2766163375 cites W2250911766 @default.
- W2766163375 cites W2952854166 @default.
- W2766163375 cites W2963970792 @default.
- W2766163375 cites W2964007976 @default.
- W2766163375 cites W2964121744 @default.
- W2766163375 hasPublicationYear "2017" @default.
- W2766163375 type Work @default.
- W2766163375 sameAs 2766163375 @default.
- W2766163375 citedByCount "2" @default.
- W2766163375 countsByYear W27661633752020 @default.
- W2766163375 countsByYear W27661633752021 @default.
- W2766163375 crossrefType "posted-content" @default.
- W2766163375 hasAuthorship W2766163375A5022877637 @default.
- W2766163375 hasAuthorship W2766163375A5048043105 @default.
- W2766163375 hasAuthorship W2766163375A5065576006 @default.
- W2766163375 hasAuthorship W2766163375A5070550789 @default.
- W2766163375 hasConcept C111472728 @default.
- W2766163375 hasConcept C119857082 @default.
- W2766163375 hasConcept C132525143 @default.
- W2766163375 hasConcept C13280743 @default.
- W2766163375 hasConcept C138885662 @default.
- W2766163375 hasConcept C154945302 @default.
- W2766163375 hasConcept C185798385 @default.
- W2766163375 hasConcept C204321447 @default.
- W2766163375 hasConcept C205649164 @default.
- W2766163375 hasConcept C2780586882 @default.
- W2766163375 hasConcept C2987255567 @default.
- W2766163375 hasConcept C41008148 @default.
- W2766163375 hasConcept C59404180 @default.
- W2766163375 hasConcept C80444323 @default.
- W2766163375 hasConcept C81363708 @default.
- W2766163375 hasConceptScore W2766163375C111472728 @default.
- W2766163375 hasConceptScore W2766163375C119857082 @default.
- W2766163375 hasConceptScore W2766163375C132525143 @default.
- W2766163375 hasConceptScore W2766163375C13280743 @default.
- W2766163375 hasConceptScore W2766163375C138885662 @default.
- W2766163375 hasConceptScore W2766163375C154945302 @default.
- W2766163375 hasConceptScore W2766163375C185798385 @default.
- W2766163375 hasConceptScore W2766163375C204321447 @default.
- W2766163375 hasConceptScore W2766163375C205649164 @default.
- W2766163375 hasConceptScore W2766163375C2780586882 @default.
- W2766163375 hasConceptScore W2766163375C2987255567 @default.
- W2766163375 hasConceptScore W2766163375C41008148 @default.
- W2766163375 hasConceptScore W2766163375C59404180 @default.
- W2766163375 hasConceptScore W2766163375C80444323 @default.
- W2766163375 hasConceptScore W2766163375C81363708 @default.
- W2766163375 hasLocation W27661633751 @default.
- W2766163375 hasOpenAccess W2766163375 @default.
- W2766163375 hasPrimaryLocation W27661633751 @default.
- W2766163375 hasRelatedWork W2522332826 @default.
- W2766163375 hasRelatedWork W2528512298 @default.
- W2766163375 hasRelatedWork W2572179331 @default.
- W2766163375 hasRelatedWork W2613301050 @default.
- W2766163375 hasRelatedWork W2767738854 @default.
- W2766163375 hasRelatedWork W2808344987 @default.
- W2766163375 hasRelatedWork W2902164678 @default.
- W2766163375 hasRelatedWork W2912308312 @default.
- W2766163375 hasRelatedWork W2962883557 @default.
- W2766163375 hasRelatedWork W2976429401 @default.
- W2766163375 hasRelatedWork W2987063230 @default.
- W2766163375 hasRelatedWork W3033112924 @default.
- W2766163375 hasRelatedWork W3038934320 @default.
- W2766163375 hasRelatedWork W3081520483 @default.
- W2766163375 hasRelatedWork W3107699589 @default.
- W2766163375 hasRelatedWork W3120343432 @default.
- W2766163375 hasRelatedWork W3184298948 @default.
- W2766163375 hasRelatedWork W3200062304 @default.
- W2766163375 hasRelatedWork W3210759373 @default.
- W2766163375 hasRelatedWork W3112618978 @default.
- W2766163375 isParatext "false" @default.
- W2766163375 isRetracted "false" @default.
- W2766163375 magId "2766163375" @default.
- W2766163375 workType "article" @default.