Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766174774> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2766174774 abstract "In the two process sleep model, the rate of sleep need dissipation is proportional to slow wave activity (SWA; EEG power in the 0.5 to 4 Hz band). The dynamics of sleep need dissipation are characterized by two parameters (the initial sleep need S o and the decay rate γ) that can be calculated from SWA values in NREM sleep. The goal in this paper is to use a neural network classifier to automatically detect NREM sleep and estimate Ŝ o and γ using a single EEG signal that is captured during sleep at home. The data from twenty subjects (4 sleep nights per subject) was used in this research. The neural network architecture was optimized using as training and validation sets the EEG sleep data from a previous study. Given the nature of the model, only three stages were considered (NREM, REM, and WAKE). The classification accuracy characterized by the Kappa value achieved in this study dataset was 0.63 (substantial agreement with manual staging) and the specificity/sensitivity for NREM detection were 0.87 and 0.8 respectively. The higher specificity in NREM detection led to systematic S o underestimation (i.e. S o > Ŝ o ) and 7 overestimation (i.e. γ 0 and γ This shows that using automatic staging to characterize sleep need dissipation leads to capturing the most specific and less variable EEG segments that contribute to SWA. This is suitable to characterize sleep need outside sleep lab settings (e.g. at home) that cannot be controlled to the same extent as sleep lab studies." @default.
- W2766174774 created "2017-11-10" @default.
- W2766174774 creator A5001267665 @default.
- W2766174774 creator A5001381023 @default.
- W2766174774 creator A5049100531 @default.
- W2766174774 creator A5050535403 @default.
- W2766174774 creator A5060364932 @default.
- W2766174774 creator A5080024263 @default.
- W2766174774 creator A5081615031 @default.
- W2766174774 creator A5085904395 @default.
- W2766174774 date "2017-08-01" @default.
- W2766174774 modified "2023-09-26" @default.
- W2766174774 title "Automatic characterization of sleep need dissipation using a single hidden layer neural network" @default.
- W2766174774 cites W1963859198 @default.
- W2766174774 cites W2064236088 @default.
- W2766174774 cites W2073556325 @default.
- W2766174774 cites W2229463916 @default.
- W2766174774 doi "https://doi.org/10.23919/eusipco.2017.8081419" @default.
- W2766174774 hasPublicationYear "2017" @default.
- W2766174774 type Work @default.
- W2766174774 sameAs 2766174774 @default.
- W2766174774 citedByCount "3" @default.
- W2766174774 countsByYear W27661747742017 @default.
- W2766174774 countsByYear W27661747742018 @default.
- W2766174774 countsByYear W27661747742022 @default.
- W2766174774 crossrefType "proceedings-article" @default.
- W2766174774 hasAuthorship W2766174774A5001267665 @default.
- W2766174774 hasAuthorship W2766174774A5001381023 @default.
- W2766174774 hasAuthorship W2766174774A5049100531 @default.
- W2766174774 hasAuthorship W2766174774A5050535403 @default.
- W2766174774 hasAuthorship W2766174774A5060364932 @default.
- W2766174774 hasAuthorship W2766174774A5080024263 @default.
- W2766174774 hasAuthorship W2766174774A5081615031 @default.
- W2766174774 hasAuthorship W2766174774A5085904395 @default.
- W2766174774 hasBestOaLocation W27661747742 @default.
- W2766174774 hasConcept C110539466 @default.
- W2766174774 hasConcept C111919701 @default.
- W2766174774 hasConcept C112144039 @default.
- W2766174774 hasConcept C153180895 @default.
- W2766174774 hasConcept C154945302 @default.
- W2766174774 hasConcept C15744967 @default.
- W2766174774 hasConcept C169760540 @default.
- W2766174774 hasConcept C20566671 @default.
- W2766174774 hasConcept C2775841894 @default.
- W2766174774 hasConcept C2778205975 @default.
- W2766174774 hasConcept C2910364982 @default.
- W2766174774 hasConcept C41008148 @default.
- W2766174774 hasConcept C50644808 @default.
- W2766174774 hasConcept C522805319 @default.
- W2766174774 hasConcept C548259974 @default.
- W2766174774 hasConcept C71924100 @default.
- W2766174774 hasConceptScore W2766174774C110539466 @default.
- W2766174774 hasConceptScore W2766174774C111919701 @default.
- W2766174774 hasConceptScore W2766174774C112144039 @default.
- W2766174774 hasConceptScore W2766174774C153180895 @default.
- W2766174774 hasConceptScore W2766174774C154945302 @default.
- W2766174774 hasConceptScore W2766174774C15744967 @default.
- W2766174774 hasConceptScore W2766174774C169760540 @default.
- W2766174774 hasConceptScore W2766174774C20566671 @default.
- W2766174774 hasConceptScore W2766174774C2775841894 @default.
- W2766174774 hasConceptScore W2766174774C2778205975 @default.
- W2766174774 hasConceptScore W2766174774C2910364982 @default.
- W2766174774 hasConceptScore W2766174774C41008148 @default.
- W2766174774 hasConceptScore W2766174774C50644808 @default.
- W2766174774 hasConceptScore W2766174774C522805319 @default.
- W2766174774 hasConceptScore W2766174774C548259974 @default.
- W2766174774 hasConceptScore W2766174774C71924100 @default.
- W2766174774 hasLocation W27661747741 @default.
- W2766174774 hasLocation W27661747742 @default.
- W2766174774 hasOpenAccess W2766174774 @default.
- W2766174774 hasPrimaryLocation W27661747741 @default.
- W2766174774 hasRelatedWork W105417093 @default.
- W2766174774 hasRelatedWork W1990304521 @default.
- W2766174774 hasRelatedWork W1996630551 @default.
- W2766174774 hasRelatedWork W2011881754 @default.
- W2766174774 hasRelatedWork W2725809568 @default.
- W2766174774 hasRelatedWork W2965401313 @default.
- W2766174774 hasRelatedWork W3124582093 @default.
- W2766174774 hasRelatedWork W41640785 @default.
- W2766174774 hasRelatedWork W43850100 @default.
- W2766174774 hasRelatedWork W62980319 @default.
- W2766174774 isParatext "false" @default.
- W2766174774 isRetracted "false" @default.
- W2766174774 magId "2766174774" @default.
- W2766174774 workType "article" @default.