Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766184732> ?p ?o ?g. }
- W2766184732 endingPage "229" @default.
- W2766184732 startingPage "217" @default.
- W2766184732 abstract "A topology optimization method, based on a direct coupled finite element (FE) and element-free Galerkin (EFG) method, is developed in this study, for reducing the computational cost of EFG-based topology optimization methods. Comparing with other coupling methods, the new coupling method can guarantee higher order continuity of the shape function in the coupling region and it can be implemented easily. A constrained centroidal Voronoi tessellation (CCVT) algorithm associated with density variable is developed to generate updated EFG nodes for the discretizing of EFG domain during the iterations which accelerates the optimization convergence. To reduce the computational cost, an adaptive multi-level Gauss quadrature scheme is introduced for numerical integration. Several examples are given to demonstrate the effectiveness of the proposed approach and the proposal shows advantages comparing with some other topology optimization methods." @default.
- W2766184732 created "2017-11-10" @default.
- W2766184732 creator A5000257292 @default.
- W2766184732 creator A5040110122 @default.
- W2766184732 creator A5052957274 @default.
- W2766184732 creator A5068947466 @default.
- W2766184732 date "2018-01-01" @default.
- W2766184732 modified "2023-10-02" @default.
- W2766184732 title "Topology optimization method with direct coupled finite element–element-free Galerkin method" @default.
- W2766184732 cites W1977282511 @default.
- W2766184732 cites W1978370824 @default.
- W2766184732 cites W1985053521 @default.
- W2766184732 cites W1996284116 @default.
- W2766184732 cites W2014753426 @default.
- W2766184732 cites W2016582483 @default.
- W2766184732 cites W2023536518 @default.
- W2766184732 cites W2026288019 @default.
- W2766184732 cites W2036576048 @default.
- W2766184732 cites W2042786856 @default.
- W2766184732 cites W2044571399 @default.
- W2766184732 cites W2046318787 @default.
- W2766184732 cites W2049519508 @default.
- W2766184732 cites W2050707118 @default.
- W2766184732 cites W2062523101 @default.
- W2766184732 cites W2067593875 @default.
- W2766184732 cites W2068104700 @default.
- W2766184732 cites W2069697210 @default.
- W2766184732 cites W2069933136 @default.
- W2766184732 cites W2073240454 @default.
- W2766184732 cites W2076674010 @default.
- W2766184732 cites W2086674516 @default.
- W2766184732 cites W2101121254 @default.
- W2766184732 cites W2110696842 @default.
- W2766184732 cites W2113883281 @default.
- W2766184732 cites W2115511946 @default.
- W2766184732 cites W2124191857 @default.
- W2766184732 cites W2132034927 @default.
- W2766184732 cites W2137726847 @default.
- W2766184732 cites W2153190576 @default.
- W2766184732 cites W2166713928 @default.
- W2766184732 cites W2616433782 @default.
- W2766184732 doi "https://doi.org/10.1016/j.advengsoft.2017.09.012" @default.
- W2766184732 hasPublicationYear "2018" @default.
- W2766184732 type Work @default.
- W2766184732 sameAs 2766184732 @default.
- W2766184732 citedByCount "16" @default.
- W2766184732 countsByYear W27661847322018 @default.
- W2766184732 countsByYear W27661847322019 @default.
- W2766184732 countsByYear W27661847322020 @default.
- W2766184732 countsByYear W27661847322021 @default.
- W2766184732 countsByYear W27661847322022 @default.
- W2766184732 crossrefType "journal-article" @default.
- W2766184732 hasAuthorship W2766184732A5000257292 @default.
- W2766184732 hasAuthorship W2766184732A5040110122 @default.
- W2766184732 hasAuthorship W2766184732A5052957274 @default.
- W2766184732 hasAuthorship W2766184732A5068947466 @default.
- W2766184732 hasConcept C11413529 @default.
- W2766184732 hasConcept C114614502 @default.
- W2766184732 hasConcept C121332964 @default.
- W2766184732 hasConcept C126255220 @default.
- W2766184732 hasConcept C127413603 @default.
- W2766184732 hasConcept C131584629 @default.
- W2766184732 hasConcept C134306372 @default.
- W2766184732 hasConcept C135628077 @default.
- W2766184732 hasConcept C162324750 @default.
- W2766184732 hasConcept C167196314 @default.
- W2766184732 hasConcept C184720557 @default.
- W2766184732 hasConcept C189216461 @default.
- W2766184732 hasConcept C27016315 @default.
- W2766184732 hasConcept C2777303404 @default.
- W2766184732 hasConcept C28826006 @default.
- W2766184732 hasConcept C33923547 @default.
- W2766184732 hasConcept C41008148 @default.
- W2766184732 hasConcept C48265008 @default.
- W2766184732 hasConcept C50522688 @default.
- W2766184732 hasConcept C73000952 @default.
- W2766184732 hasConcept C78519656 @default.
- W2766184732 hasConcept C97355855 @default.
- W2766184732 hasConceptScore W2766184732C11413529 @default.
- W2766184732 hasConceptScore W2766184732C114614502 @default.
- W2766184732 hasConceptScore W2766184732C121332964 @default.
- W2766184732 hasConceptScore W2766184732C126255220 @default.
- W2766184732 hasConceptScore W2766184732C127413603 @default.
- W2766184732 hasConceptScore W2766184732C131584629 @default.
- W2766184732 hasConceptScore W2766184732C134306372 @default.
- W2766184732 hasConceptScore W2766184732C135628077 @default.
- W2766184732 hasConceptScore W2766184732C162324750 @default.
- W2766184732 hasConceptScore W2766184732C167196314 @default.
- W2766184732 hasConceptScore W2766184732C184720557 @default.
- W2766184732 hasConceptScore W2766184732C189216461 @default.
- W2766184732 hasConceptScore W2766184732C27016315 @default.
- W2766184732 hasConceptScore W2766184732C2777303404 @default.
- W2766184732 hasConceptScore W2766184732C28826006 @default.
- W2766184732 hasConceptScore W2766184732C33923547 @default.
- W2766184732 hasConceptScore W2766184732C41008148 @default.
- W2766184732 hasConceptScore W2766184732C48265008 @default.
- W2766184732 hasConceptScore W2766184732C50522688 @default.
- W2766184732 hasConceptScore W2766184732C73000952 @default.