Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766199271> ?p ?o ?g. }
- W2766199271 endingPage "30" @default.
- W2766199271 startingPage "20" @default.
- W2766199271 abstract "Abstract Dynamic models with time-dependent output are widely used in engineering for risk assessment and decision making. Global sensitivity analysis for these models is very useful for simplifying the model, improving the model performance, etc. The existent covariance decomposition based global sensitivity analysis method combines the variance based sensitivity analysis results of the model output at all the instants, which just utilizes the information of the time-dependent output in time domain. However, many significant features of time-dependent output may not be obtained from the time domain. Thus, performing global sensitivity analysis for dynamic models just with the information in time domain may be incomplete. In this paper, a new kind of sensitivity indices based on wavelet analysis is proposed. The energy distribution of model output over different frequency bands is extracted as a quantitative feature of the time-dependent output, and it contains the information of model output in both time and frequency domains. Then, a vector projection method is utilized to measure the effects of input variables on the energy distribution of model output. An efficient algorithm is also proposed to estimate the new sensitivity indices. The numerical examples show the difference between the new sensitivity indices and the covariance decomposition based sensitivity indices. Finally, the new sensitivity indices are applied to an environmental model to tell the relative importance of the input variables, which can be useful for improving the model performance." @default.
- W2766199271 created "2017-11-10" @default.
- W2766199271 creator A5009579767 @default.
- W2766199271 creator A5031417213 @default.
- W2766199271 creator A5040650657 @default.
- W2766199271 date "2018-02-01" @default.
- W2766199271 modified "2023-10-12" @default.
- W2766199271 title "Multivariate global sensitivity analysis for dynamic models based on wavelet analysis" @default.
- W2766199271 cites W1493983017 @default.
- W2766199271 cites W1964131545 @default.
- W2766199271 cites W1967213492 @default.
- W2766199271 cites W1968247170 @default.
- W2766199271 cites W1973492181 @default.
- W2766199271 cites W1979179853 @default.
- W2766199271 cites W1980339291 @default.
- W2766199271 cites W1981618598 @default.
- W2766199271 cites W1987167399 @default.
- W2766199271 cites W1988822245 @default.
- W2766199271 cites W1994080277 @default.
- W2766199271 cites W2006717130 @default.
- W2766199271 cites W2008186776 @default.
- W2766199271 cites W2010712650 @default.
- W2766199271 cites W2011041764 @default.
- W2766199271 cites W2012998201 @default.
- W2766199271 cites W2014181466 @default.
- W2766199271 cites W2016133956 @default.
- W2766199271 cites W2019797235 @default.
- W2766199271 cites W2026645785 @default.
- W2766199271 cites W2031423206 @default.
- W2766199271 cites W2034139177 @default.
- W2766199271 cites W2035363534 @default.
- W2766199271 cites W2038012176 @default.
- W2766199271 cites W2039085300 @default.
- W2766199271 cites W2041684446 @default.
- W2766199271 cites W2042925520 @default.
- W2766199271 cites W2044582942 @default.
- W2766199271 cites W2045390879 @default.
- W2766199271 cites W2045400669 @default.
- W2766199271 cites W2050341914 @default.
- W2766199271 cites W2052960370 @default.
- W2766199271 cites W2060161563 @default.
- W2766199271 cites W2063847981 @default.
- W2766199271 cites W2067529211 @default.
- W2766199271 cites W2077993284 @default.
- W2766199271 cites W2088765131 @default.
- W2766199271 cites W2098363069 @default.
- W2766199271 cites W2101589741 @default.
- W2766199271 cites W2111963426 @default.
- W2766199271 cites W2132984323 @default.
- W2766199271 cites W2138766682 @default.
- W2766199271 cites W2139783955 @default.
- W2766199271 cites W2141755357 @default.
- W2766199271 cites W2168985799 @default.
- W2766199271 cites W2183601108 @default.
- W2766199271 cites W2256092222 @default.
- W2766199271 cites W2485227435 @default.
- W2766199271 cites W2542566864 @default.
- W2766199271 cites W2964022075 @default.
- W2766199271 cites W590241356 @default.
- W2766199271 cites W925742927 @default.
- W2766199271 cites W999207820 @default.
- W2766199271 cites W1511263750 @default.
- W2766199271 doi "https://doi.org/10.1016/j.ress.2017.10.007" @default.
- W2766199271 hasPublicationYear "2018" @default.
- W2766199271 type Work @default.
- W2766199271 sameAs 2766199271 @default.
- W2766199271 citedByCount "47" @default.
- W2766199271 countsByYear W27661992712018 @default.
- W2766199271 countsByYear W27661992712019 @default.
- W2766199271 countsByYear W27661992712020 @default.
- W2766199271 countsByYear W27661992712021 @default.
- W2766199271 countsByYear W27661992712022 @default.
- W2766199271 countsByYear W27661992712023 @default.
- W2766199271 crossrefType "journal-article" @default.
- W2766199271 hasAuthorship W2766199271A5009579767 @default.
- W2766199271 hasAuthorship W2766199271A5031417213 @default.
- W2766199271 hasAuthorship W2766199271A5040650657 @default.
- W2766199271 hasConcept C105795698 @default.
- W2766199271 hasConcept C124101348 @default.
- W2766199271 hasConcept C127413603 @default.
- W2766199271 hasConcept C149782125 @default.
- W2766199271 hasConcept C154945302 @default.
- W2766199271 hasConcept C161584116 @default.
- W2766199271 hasConcept C21200559 @default.
- W2766199271 hasConcept C24326235 @default.
- W2766199271 hasConcept C33923547 @default.
- W2766199271 hasConcept C38180746 @default.
- W2766199271 hasConcept C41008148 @default.
- W2766199271 hasConcept C47432892 @default.
- W2766199271 hasConceptScore W2766199271C105795698 @default.
- W2766199271 hasConceptScore W2766199271C124101348 @default.
- W2766199271 hasConceptScore W2766199271C127413603 @default.
- W2766199271 hasConceptScore W2766199271C149782125 @default.
- W2766199271 hasConceptScore W2766199271C154945302 @default.
- W2766199271 hasConceptScore W2766199271C161584116 @default.
- W2766199271 hasConceptScore W2766199271C21200559 @default.
- W2766199271 hasConceptScore W2766199271C24326235 @default.
- W2766199271 hasConceptScore W2766199271C33923547 @default.