Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766211653> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2766211653 abstract "We study two problems concerning the maximal and convex layers of a point set in d dimensions. The first is the average-case complexity of computing the first k layers of a point set drawn from a uniform or component-independent (CI) distribution. We show that, for (d in {2,3}), the first (n^{1/d-epsilon }) maximal layers can be computed using (dn + o(n)) scalar comparisons with high probability. For (d ge 4), the first (n^{1/2d-epsilon }) maximal layers can be computed within this bound with high probability. The first (n^{1/d-epsilon }) convex layers in 2D, the first (n^{1/2d-epsilon }) convex layers in 3D, and the first (n^{1/(d^2+2)}) convex layers in (d ge 4) dimensions can be computed using (2dn + o(n)) scalar comparisons with high probability. Since the expected number of maximal layers in 2D is (2sqrt{n}), our result for 2D maximal layers shows that it takes (dn + o(n)) scalar comparisons to compute a (1/n^epsilon )-fraction of all layers in the average case. The second problem is bounding the expected size of the kth maximal and convex layer. We show that the kth maximal and convex layer of a point set drawn from a continuous CI distribution in d dimensions has expected size (O(k^d log ^{d-1} (n/k^d)))." @default.
- W2766211653 created "2017-11-10" @default.
- W2766211653 creator A5009017533 @default.
- W2766211653 creator A5019738080 @default.
- W2766211653 creator A5070414884 @default.
- W2766211653 date "2018-01-01" @default.
- W2766211653 modified "2023-09-24" @default.
- W2766211653 title "Maximal and Convex Layers of Random Point Sets" @default.
- W2766211653 cites W1490019115 @default.
- W2766211653 cites W1963811858 @default.
- W2766211653 cites W1992963068 @default.
- W2766211653 cites W2048493433 @default.
- W2766211653 cites W2049864887 @default.
- W2766211653 cites W2065065327 @default.
- W2766211653 cites W2067403198 @default.
- W2766211653 cites W2071676345 @default.
- W2766211653 cites W2073239623 @default.
- W2766211653 cites W2089842370 @default.
- W2766211653 cites W2170188482 @default.
- W2766211653 cites W2905926165 @default.
- W2766211653 cites W3136083256 @default.
- W2766211653 cites W4231916799 @default.
- W2766211653 cites W4251391716 @default.
- W2766211653 doi "https://doi.org/10.1007/978-3-319-77404-6_44" @default.
- W2766211653 hasPublicationYear "2018" @default.
- W2766211653 type Work @default.
- W2766211653 sameAs 2766211653 @default.
- W2766211653 citedByCount "2" @default.
- W2766211653 countsByYear W27662116532020 @default.
- W2766211653 crossrefType "book-chapter" @default.
- W2766211653 hasAuthorship W2766211653A5009017533 @default.
- W2766211653 hasAuthorship W2766211653A5019738080 @default.
- W2766211653 hasAuthorship W2766211653A5070414884 @default.
- W2766211653 hasConcept C105795698 @default.
- W2766211653 hasConcept C112680207 @default.
- W2766211653 hasConcept C114614502 @default.
- W2766211653 hasConcept C134306372 @default.
- W2766211653 hasConcept C134912446 @default.
- W2766211653 hasConcept C149441793 @default.
- W2766211653 hasConcept C154945302 @default.
- W2766211653 hasConcept C157972887 @default.
- W2766211653 hasConcept C206194317 @default.
- W2766211653 hasConcept C2524010 @default.
- W2766211653 hasConcept C33923547 @default.
- W2766211653 hasConcept C41008148 @default.
- W2766211653 hasConcept C49870271 @default.
- W2766211653 hasConcept C57691317 @default.
- W2766211653 hasConcept C63584917 @default.
- W2766211653 hasConcept C77553402 @default.
- W2766211653 hasConceptScore W2766211653C105795698 @default.
- W2766211653 hasConceptScore W2766211653C112680207 @default.
- W2766211653 hasConceptScore W2766211653C114614502 @default.
- W2766211653 hasConceptScore W2766211653C134306372 @default.
- W2766211653 hasConceptScore W2766211653C134912446 @default.
- W2766211653 hasConceptScore W2766211653C149441793 @default.
- W2766211653 hasConceptScore W2766211653C154945302 @default.
- W2766211653 hasConceptScore W2766211653C157972887 @default.
- W2766211653 hasConceptScore W2766211653C206194317 @default.
- W2766211653 hasConceptScore W2766211653C2524010 @default.
- W2766211653 hasConceptScore W2766211653C33923547 @default.
- W2766211653 hasConceptScore W2766211653C41008148 @default.
- W2766211653 hasConceptScore W2766211653C49870271 @default.
- W2766211653 hasConceptScore W2766211653C57691317 @default.
- W2766211653 hasConceptScore W2766211653C63584917 @default.
- W2766211653 hasConceptScore W2766211653C77553402 @default.
- W2766211653 hasLocation W27662116531 @default.
- W2766211653 hasOpenAccess W2766211653 @default.
- W2766211653 hasPrimaryLocation W27662116531 @default.
- W2766211653 hasRelatedWork W1461974625 @default.
- W2766211653 hasRelatedWork W162782070 @default.
- W2766211653 hasRelatedWork W1633208468 @default.
- W2766211653 hasRelatedWork W1981151888 @default.
- W2766211653 hasRelatedWork W1987982457 @default.
- W2766211653 hasRelatedWork W1988728026 @default.
- W2766211653 hasRelatedWork W2013961939 @default.
- W2766211653 hasRelatedWork W2139822910 @default.
- W2766211653 hasRelatedWork W2160874732 @default.
- W2766211653 hasRelatedWork W2163000644 @default.
- W2766211653 hasRelatedWork W2312795249 @default.
- W2766211653 hasRelatedWork W2793848038 @default.
- W2766211653 hasRelatedWork W2890599768 @default.
- W2766211653 hasRelatedWork W2952517589 @default.
- W2766211653 hasRelatedWork W2962734049 @default.
- W2766211653 hasRelatedWork W2964326364 @default.
- W2766211653 hasRelatedWork W3043179002 @default.
- W2766211653 hasRelatedWork W3099476760 @default.
- W2766211653 hasRelatedWork W3099923724 @default.
- W2766211653 hasRelatedWork W3113861354 @default.
- W2766211653 isParatext "false" @default.
- W2766211653 isRetracted "false" @default.
- W2766211653 magId "2766211653" @default.
- W2766211653 workType "book-chapter" @default.