Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766295554> ?p ?o ?g. }
- W2766295554 endingPage "2488" @default.
- W2766295554 startingPage "2488" @default.
- W2766295554 abstract "Water stress, which affects yield and wine quality, is often evaluated using the midday stem water potential (Ψstem). However, this measurement is acquired on a per plant basis and does not account for the assessment of vine water status spatial variability. The use of multispectral cameras mounted on unmanned aerial vehicle (UAV) is capable to capture the variability of vine water stress in a whole field scenario. It has been reported that conventional multispectral indices (CMI) that use information between 500–800 nm, do not accurately predict plant water status since they are not sensitive to water content. The objective of this study was to develop artificial neural network (ANN) models derived from multispectral images to predict the Ψstem spatial variability of a drip-irrigated Carménère vineyard in Talca, Maule Region, Chile. The coefficient of determination (R2) obtained between ANN outputs and ground-truth measurements of Ψstem were between 0.56–0.87, with the best performance observed for the model that included the bands 550, 570, 670, 700 and 800 nm. Validation analysis indicated that the ANN model could estimate Ψstem with a mean absolute error (MAE) of 0.1 MPa, root mean square error (RMSE) of 0.12 MPa, and relative error (RE) of −9.1%. For the validation of the CMI, the MAE, RMSE and RE values were between 0.26–0.27 MPa, 0.32–0.34 MPa and −24.2–25.6%, respectively." @default.
- W2766295554 created "2017-11-10" @default.
- W2766295554 creator A5047539499 @default.
- W2766295554 creator A5057480937 @default.
- W2766295554 creator A5058036055 @default.
- W2766295554 creator A5073465170 @default.
- W2766295554 date "2017-10-30" @default.
- W2766295554 modified "2023-10-03" @default.
- W2766295554 title "Artificial Neural Network to Predict Vine Water Status Spatial Variability Using Multispectral Information Obtained from an Unmanned Aerial Vehicle (UAV)" @default.
- W2766295554 cites W1132038451 @default.
- W2766295554 cites W1516502116 @default.
- W2766295554 cites W1586335931 @default.
- W2766295554 cites W1824582958 @default.
- W2766295554 cites W1871264645 @default.
- W2766295554 cites W1963541652 @default.
- W2766295554 cites W1967395374 @default.
- W2766295554 cites W1972793421 @default.
- W2766295554 cites W1975442588 @default.
- W2766295554 cites W1976759119 @default.
- W2766295554 cites W1980298608 @default.
- W2766295554 cites W1986786848 @default.
- W2766295554 cites W1987557628 @default.
- W2766295554 cites W1993417862 @default.
- W2766295554 cites W1998842586 @default.
- W2766295554 cites W1998943389 @default.
- W2766295554 cites W2002190523 @default.
- W2766295554 cites W2002320280 @default.
- W2766295554 cites W2005125125 @default.
- W2766295554 cites W2006259528 @default.
- W2766295554 cites W2007146840 @default.
- W2766295554 cites W2011833757 @default.
- W2766295554 cites W2017717118 @default.
- W2766295554 cites W2018334443 @default.
- W2766295554 cites W2019088823 @default.
- W2766295554 cites W2021765748 @default.
- W2766295554 cites W2025757188 @default.
- W2766295554 cites W2030233869 @default.
- W2766295554 cites W2031292142 @default.
- W2766295554 cites W2032188979 @default.
- W2766295554 cites W2033245860 @default.
- W2766295554 cites W2037856292 @default.
- W2766295554 cites W2042551070 @default.
- W2766295554 cites W2044252996 @default.
- W2766295554 cites W2049957303 @default.
- W2766295554 cites W2051112824 @default.
- W2766295554 cites W2051680981 @default.
- W2766295554 cites W2052700773 @default.
- W2766295554 cites W2055963101 @default.
- W2766295554 cites W2062982970 @default.
- W2766295554 cites W2064417027 @default.
- W2766295554 cites W2067539594 @default.
- W2766295554 cites W2076515759 @default.
- W2766295554 cites W2079541639 @default.
- W2766295554 cites W2084678032 @default.
- W2766295554 cites W2085940928 @default.
- W2766295554 cites W2088699921 @default.
- W2766295554 cites W2091517267 @default.
- W2766295554 cites W2097989534 @default.
- W2766295554 cites W2107918911 @default.
- W2766295554 cites W2110511975 @default.
- W2766295554 cites W2112740731 @default.
- W2766295554 cites W2121394390 @default.
- W2766295554 cites W2130766301 @default.
- W2766295554 cites W2133125644 @default.
- W2766295554 cites W2139034598 @default.
- W2766295554 cites W2139294397 @default.
- W2766295554 cites W2140553384 @default.
- W2766295554 cites W2143392008 @default.
- W2766295554 cites W2150853404 @default.
- W2766295554 cites W2152208835 @default.
- W2766295554 cites W2155622525 @default.
- W2766295554 cites W2158695073 @default.
- W2766295554 cites W2163004831 @default.
- W2766295554 cites W2163410149 @default.
- W2766295554 cites W2175132760 @default.
- W2766295554 cites W2176673053 @default.
- W2766295554 cites W2183783679 @default.
- W2766295554 cites W2207324899 @default.
- W2766295554 cites W2221225501 @default.
- W2766295554 cites W2237946102 @default.
- W2766295554 cites W2303532544 @default.
- W2766295554 cites W2314684259 @default.
- W2766295554 cites W2505248794 @default.
- W2766295554 cites W2515492367 @default.
- W2766295554 cites W2528379650 @default.
- W2766295554 cites W2560006913 @default.
- W2766295554 cites W2560482956 @default.
- W2766295554 cites W2590141488 @default.
- W2766295554 cites W2615412239 @default.
- W2766295554 cites W2735868225 @default.
- W2766295554 cites W2738775621 @default.
- W2766295554 cites W2744957585 @default.
- W2766295554 cites W2766390436 @default.
- W2766295554 doi "https://doi.org/10.3390/s17112488" @default.
- W2766295554 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5713508" @default.
- W2766295554 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29084169" @default.
- W2766295554 hasPublicationYear "2017" @default.
- W2766295554 type Work @default.