Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766409877> ?p ?o ?g. }
- W2766409877 endingPage "568" @default.
- W2766409877 startingPage "564" @default.
- W2766409877 abstract "We propose a paradigm to apply machine learning various databases which have emerged in the study of the string landscape. In particular, we establish neural networks as both classifiers and predictors and train them with a host of available data ranging from Calabi–Yau manifolds and vector bundles, to quiver representations for gauge theories, using a novel framework of recasting geometrical and physical data as pixelated images. We find that even a relatively simple neural network can learn many significant quantities to astounding accuracy in a matter of minutes and can also predict hithertofore unencountered results, whereby rendering the paradigm a valuable tool in physics as well as pure mathematics." @default.
- W2766409877 created "2017-11-10" @default.
- W2766409877 creator A5059766550 @default.
- W2766409877 date "2017-11-01" @default.
- W2766409877 modified "2023-10-02" @default.
- W2766409877 title "Machine-learning the string landscape" @default.
- W2766409877 cites W1923361784 @default.
- W2766409877 cites W1973565526 @default.
- W2766409877 cites W1987639141 @default.
- W2766409877 cites W1996475841 @default.
- W2766409877 cites W2016019560 @default.
- W2766409877 cites W2016100862 @default.
- W2766409877 cites W2018953885 @default.
- W2766409877 cites W2041625827 @default.
- W2766409877 cites W2057128568 @default.
- W2766409877 cites W2063286743 @default.
- W2766409877 cites W2076155667 @default.
- W2766409877 cites W2076780948 @default.
- W2766409877 cites W2125835296 @default.
- W2766409877 cites W2144163341 @default.
- W2766409877 cites W2160385356 @default.
- W2766409877 cites W2593805616 @default.
- W2766409877 cites W2963610546 @default.
- W2766409877 cites W3099646963 @default.
- W2766409877 cites W3103145154 @default.
- W2766409877 cites W4237430678 @default.
- W2766409877 doi "https://doi.org/10.1016/j.physletb.2017.10.024" @default.
- W2766409877 hasPublicationYear "2017" @default.
- W2766409877 type Work @default.
- W2766409877 sameAs 2766409877 @default.
- W2766409877 citedByCount "67" @default.
- W2766409877 countsByYear W27664098772018 @default.
- W2766409877 countsByYear W27664098772019 @default.
- W2766409877 countsByYear W27664098772020 @default.
- W2766409877 countsByYear W27664098772021 @default.
- W2766409877 countsByYear W27664098772022 @default.
- W2766409877 countsByYear W27664098772023 @default.
- W2766409877 crossrefType "journal-article" @default.
- W2766409877 hasAuthorship W2766409877A5059766550 @default.
- W2766409877 hasBestOaLocation W27664098771 @default.
- W2766409877 hasConcept C109214941 @default.
- W2766409877 hasConcept C111472728 @default.
- W2766409877 hasConcept C115051666 @default.
- W2766409877 hasConcept C119857082 @default.
- W2766409877 hasConcept C121332964 @default.
- W2766409877 hasConcept C138885662 @default.
- W2766409877 hasConcept C154945302 @default.
- W2766409877 hasConcept C157486923 @default.
- W2766409877 hasConcept C166957645 @default.
- W2766409877 hasConcept C168310172 @default.
- W2766409877 hasConcept C202444582 @default.
- W2766409877 hasConcept C205649164 @default.
- W2766409877 hasConcept C205711294 @default.
- W2766409877 hasConcept C2780586882 @default.
- W2766409877 hasConcept C33332235 @default.
- W2766409877 hasConcept C33923547 @default.
- W2766409877 hasConcept C40976572 @default.
- W2766409877 hasConcept C41008148 @default.
- W2766409877 hasConcept C49987212 @default.
- W2766409877 hasConcept C50644808 @default.
- W2766409877 hasConcept C76155785 @default.
- W2766409877 hasConceptScore W2766409877C109214941 @default.
- W2766409877 hasConceptScore W2766409877C111472728 @default.
- W2766409877 hasConceptScore W2766409877C115051666 @default.
- W2766409877 hasConceptScore W2766409877C119857082 @default.
- W2766409877 hasConceptScore W2766409877C121332964 @default.
- W2766409877 hasConceptScore W2766409877C138885662 @default.
- W2766409877 hasConceptScore W2766409877C154945302 @default.
- W2766409877 hasConceptScore W2766409877C157486923 @default.
- W2766409877 hasConceptScore W2766409877C166957645 @default.
- W2766409877 hasConceptScore W2766409877C168310172 @default.
- W2766409877 hasConceptScore W2766409877C202444582 @default.
- W2766409877 hasConceptScore W2766409877C205649164 @default.
- W2766409877 hasConceptScore W2766409877C205711294 @default.
- W2766409877 hasConceptScore W2766409877C2780586882 @default.
- W2766409877 hasConceptScore W2766409877C33332235 @default.
- W2766409877 hasConceptScore W2766409877C33923547 @default.
- W2766409877 hasConceptScore W2766409877C40976572 @default.
- W2766409877 hasConceptScore W2766409877C41008148 @default.
- W2766409877 hasConceptScore W2766409877C49987212 @default.
- W2766409877 hasConceptScore W2766409877C50644808 @default.
- W2766409877 hasConceptScore W2766409877C76155785 @default.
- W2766409877 hasFunder F4320311983 @default.
- W2766409877 hasFunder F4320321106 @default.
- W2766409877 hasFunder F4320323021 @default.
- W2766409877 hasFunder F4320334632 @default.
- W2766409877 hasLocation W27664098771 @default.
- W2766409877 hasLocation W27664098772 @default.
- W2766409877 hasOpenAccess W2766409877 @default.
- W2766409877 hasPrimaryLocation W27664098771 @default.
- W2766409877 hasRelatedWork W1527199390 @default.
- W2766409877 hasRelatedWork W1567887254 @default.
- W2766409877 hasRelatedWork W1674577224 @default.
- W2766409877 hasRelatedWork W1990393733 @default.
- W2766409877 hasRelatedWork W2065124451 @default.
- W2766409877 hasRelatedWork W2487574063 @default.
- W2766409877 hasRelatedWork W2921144874 @default.
- W2766409877 hasRelatedWork W2952455354 @default.