Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766438525> ?p ?o ?g. }
- W2766438525 endingPage "503" @default.
- W2766438525 startingPage "492" @default.
- W2766438525 abstract "Machine learning methods and in particular random forests are promising approaches for prediction based on high dimensional omics data sets. They provide variable importance measures to rank predictors according to their predictive power. If building a prediction model is the main goal of a study, often a minimal set of variables with good prediction performance is selected. However, if the objective is the identification of involved variables to find active networks and pathways, approaches that aim to select all relevant variables should be preferred. We evaluated several variable selection procedures based on simulated data as well as publicly available experimental methylation and gene expression data. Our comparison included the Boruta algorithm, the Vita method, recurrent relative variable importance, a permutation approach and its parametric variant (Altmann) as well as recursive feature elimination (RFE). In our simulation studies, Boruta was the most powerful approach, followed closely by the Vita method. Both approaches demonstrated similar stability in variable selection, while Vita was the most robust approach under a pure null model without any predictor variables related to the outcome. In the analysis of the different experimental data sets, Vita demonstrated slightly better stability in variable selection and was less computationally intensive than Boruta. In conclusion, we recommend the Boruta and Vita approaches for the analysis of high-dimensional data sets. Vita is considerably faster than Boruta and thus more suitable for large data sets, but only Boruta can also be applied in low-dimensional settings." @default.
- W2766438525 created "2017-11-10" @default.
- W2766438525 creator A5002534401 @default.
- W2766438525 creator A5034354112 @default.
- W2766438525 creator A5054264459 @default.
- W2766438525 date "2017-10-16" @default.
- W2766438525 modified "2023-10-10" @default.
- W2766438525 title "Evaluation of variable selection methods for random forests and omics data sets" @default.
- W2766438525 cites W1520812622 @default.
- W2766438525 cites W1546348152 @default.
- W2766438525 cites W1697397227 @default.
- W2766438525 cites W1852605861 @default.
- W2766438525 cites W1971042695 @default.
- W2766438525 cites W1971912363 @default.
- W2766438525 cites W1995199599 @default.
- W2766438525 cites W2030108859 @default.
- W2766438525 cites W2035465844 @default.
- W2766438525 cites W2036581265 @default.
- W2766438525 cites W2043546047 @default.
- W2766438525 cites W2044702943 @default.
- W2766438525 cites W2049442567 @default.
- W2766438525 cites W2051177122 @default.
- W2766438525 cites W2071659396 @default.
- W2766438525 cites W2075122068 @default.
- W2766438525 cites W2080811443 @default.
- W2766438525 cites W2083906081 @default.
- W2766438525 cites W2084625379 @default.
- W2766438525 cites W2089797399 @default.
- W2766438525 cites W2090596338 @default.
- W2766438525 cites W2096283457 @default.
- W2766438525 cites W2102636708 @default.
- W2766438525 cites W2109505394 @default.
- W2766438525 cites W2118258530 @default.
- W2766438525 cites W2118685291 @default.
- W2766438525 cites W2122189635 @default.
- W2766438525 cites W2122825543 @default.
- W2766438525 cites W2147626660 @default.
- W2766438525 cites W2151990594 @default.
- W2766438525 cites W2155261478 @default.
- W2766438525 cites W2156665896 @default.
- W2766438525 cites W2157132621 @default.
- W2766438525 cites W2162162988 @default.
- W2766438525 cites W2169281690 @default.
- W2766438525 cites W2171558600 @default.
- W2766438525 cites W2171627975 @default.
- W2766438525 cites W2181164912 @default.
- W2766438525 cites W2194503871 @default.
- W2766438525 cites W2252976504 @default.
- W2766438525 cites W2413140984 @default.
- W2766438525 cites W2557117995 @default.
- W2766438525 cites W2560367415 @default.
- W2766438525 cites W2593086047 @default.
- W2766438525 cites W2911964244 @default.
- W2766438525 doi "https://doi.org/10.1093/bib/bbx124" @default.
- W2766438525 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6433899" @default.
- W2766438525 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29045534" @default.
- W2766438525 hasPublicationYear "2017" @default.
- W2766438525 type Work @default.
- W2766438525 sameAs 2766438525 @default.
- W2766438525 citedByCount "309" @default.
- W2766438525 countsByYear W27664385252018 @default.
- W2766438525 countsByYear W27664385252019 @default.
- W2766438525 countsByYear W27664385252020 @default.
- W2766438525 countsByYear W27664385252021 @default.
- W2766438525 countsByYear W27664385252022 @default.
- W2766438525 countsByYear W27664385252023 @default.
- W2766438525 crossrefType "journal-article" @default.
- W2766438525 hasAuthorship W2766438525A5002534401 @default.
- W2766438525 hasAuthorship W2766438525A5034354112 @default.
- W2766438525 hasAuthorship W2766438525A5054264459 @default.
- W2766438525 hasBestOaLocation W27664385251 @default.
- W2766438525 hasConcept C112972136 @default.
- W2766438525 hasConcept C116834253 @default.
- W2766438525 hasConcept C119857082 @default.
- W2766438525 hasConcept C121332964 @default.
- W2766438525 hasConcept C124101348 @default.
- W2766438525 hasConcept C134306372 @default.
- W2766438525 hasConcept C148483581 @default.
- W2766438525 hasConcept C154945302 @default.
- W2766438525 hasConcept C182365436 @default.
- W2766438525 hasConcept C21308566 @default.
- W2766438525 hasConcept C24890656 @default.
- W2766438525 hasConcept C33923547 @default.
- W2766438525 hasConcept C41008148 @default.
- W2766438525 hasConcept C59822182 @default.
- W2766438525 hasConcept C81917197 @default.
- W2766438525 hasConcept C86803240 @default.
- W2766438525 hasConceptScore W2766438525C112972136 @default.
- W2766438525 hasConceptScore W2766438525C116834253 @default.
- W2766438525 hasConceptScore W2766438525C119857082 @default.
- W2766438525 hasConceptScore W2766438525C121332964 @default.
- W2766438525 hasConceptScore W2766438525C124101348 @default.
- W2766438525 hasConceptScore W2766438525C134306372 @default.
- W2766438525 hasConceptScore W2766438525C148483581 @default.
- W2766438525 hasConceptScore W2766438525C154945302 @default.
- W2766438525 hasConceptScore W2766438525C182365436 @default.
- W2766438525 hasConceptScore W2766438525C21308566 @default.
- W2766438525 hasConceptScore W2766438525C24890656 @default.