Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766479551> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2766479551 abstract "In this paper, we propose a novel framework for the segmentation of noisy images by incorporating the advantages of k-means clustering and distance regularized level set evolution (DRLSE). Level set methods and active contour models (ACMs) plays a vital role in the applications of image processing, robot vision, object recognition and computer vision. DRLSE model has recently become a powerful technique for image segmentation. DRLSE model eliminates the re-initialization problem in conventional level set method. DRLSE has been applied successfully into some fields like medical imaging, remote sensing and computer vision. However when it is applied to noisy images, It leads to significant drawbacks (number of iterations and computational time is increased). In order to avoid disadvantages of conventional DRLSE, we introduce a method to combine the median filtering, k-means clustering and DRLSE model. Firstly a noise free image is extracted by median filtering; then k-means clustering is applied to denoised image. The last stage is that the DRLSE model is applied for the extraction of object boundaries with pre segmentation process. The accuracy and the efficiency of the algorithm can be described on various noisy magnetic resonance (MR) brain images. The experiments show that our proposed method is more effective for noisy images." @default.
- W2766479551 created "2017-11-10" @default.
- W2766479551 creator A5023464220 @default.
- W2766479551 creator A5080985753 @default.
- W2766479551 date "2017-04-01" @default.
- W2766479551 modified "2023-09-28" @default.
- W2766479551 title "Segmentation of noisy images using improved distance regularized level set evolution" @default.
- W2766479551 cites W1159302035 @default.
- W2766479551 cites W1979393293 @default.
- W2766479551 cites W1980658573 @default.
- W2766479551 cites W1991113069 @default.
- W2766479551 cites W2046789249 @default.
- W2766479551 cites W2075586094 @default.
- W2766479551 cites W2092901587 @default.
- W2766479551 cites W2093834886 @default.
- W2766479551 cites W2104095591 @default.
- W2766479551 cites W2116040950 @default.
- W2766479551 cites W2118993982 @default.
- W2766479551 cites W2122184585 @default.
- W2766479551 cites W2133059825 @default.
- W2766479551 cites W2145803225 @default.
- W2766479551 cites W2149184914 @default.
- W2766479551 cites W2489401689 @default.
- W2766479551 cites W2522636718 @default.
- W2766479551 cites W3211330693 @default.
- W2766479551 cites W389379704 @default.
- W2766479551 cites W2537124135 @default.
- W2766479551 doi "https://doi.org/10.1109/iccpct.2017.8074323" @default.
- W2766479551 hasPublicationYear "2017" @default.
- W2766479551 type Work @default.
- W2766479551 sameAs 2766479551 @default.
- W2766479551 citedByCount "3" @default.
- W2766479551 countsByYear W27664795512017 @default.
- W2766479551 countsByYear W27664795512020 @default.
- W2766479551 crossrefType "proceedings-article" @default.
- W2766479551 hasAuthorship W2766479551A5023464220 @default.
- W2766479551 hasAuthorship W2766479551A5080985753 @default.
- W2766479551 hasConcept C114466953 @default.
- W2766479551 hasConcept C115961682 @default.
- W2766479551 hasConcept C124504099 @default.
- W2766479551 hasConcept C153008295 @default.
- W2766479551 hasConcept C153180895 @default.
- W2766479551 hasConcept C154945302 @default.
- W2766479551 hasConcept C199360897 @default.
- W2766479551 hasConcept C25694479 @default.
- W2766479551 hasConcept C31972630 @default.
- W2766479551 hasConcept C41008148 @default.
- W2766479551 hasConcept C65885262 @default.
- W2766479551 hasConcept C73555534 @default.
- W2766479551 hasConcept C89600930 @default.
- W2766479551 hasConcept C99498987 @default.
- W2766479551 hasConceptScore W2766479551C114466953 @default.
- W2766479551 hasConceptScore W2766479551C115961682 @default.
- W2766479551 hasConceptScore W2766479551C124504099 @default.
- W2766479551 hasConceptScore W2766479551C153008295 @default.
- W2766479551 hasConceptScore W2766479551C153180895 @default.
- W2766479551 hasConceptScore W2766479551C154945302 @default.
- W2766479551 hasConceptScore W2766479551C199360897 @default.
- W2766479551 hasConceptScore W2766479551C25694479 @default.
- W2766479551 hasConceptScore W2766479551C31972630 @default.
- W2766479551 hasConceptScore W2766479551C41008148 @default.
- W2766479551 hasConceptScore W2766479551C65885262 @default.
- W2766479551 hasConceptScore W2766479551C73555534 @default.
- W2766479551 hasConceptScore W2766479551C89600930 @default.
- W2766479551 hasConceptScore W2766479551C99498987 @default.
- W2766479551 hasLocation W27664795511 @default.
- W2766479551 hasOpenAccess W2766479551 @default.
- W2766479551 hasPrimaryLocation W27664795511 @default.
- W2766479551 hasRelatedWork W1569177153 @default.
- W2766479551 hasRelatedWork W2058054146 @default.
- W2766479551 hasRelatedWork W2294756070 @default.
- W2766479551 hasRelatedWork W2308949997 @default.
- W2766479551 hasRelatedWork W2354127932 @default.
- W2766479551 hasRelatedWork W2370830355 @default.
- W2766479551 hasRelatedWork W2390098587 @default.
- W2766479551 hasRelatedWork W2771384266 @default.
- W2766479551 hasRelatedWork W2785469807 @default.
- W2766479551 hasRelatedWork W2789519600 @default.
- W2766479551 hasRelatedWork W2800435885 @default.
- W2766479551 hasRelatedWork W2885459080 @default.
- W2766479551 hasRelatedWork W2943779402 @default.
- W2766479551 hasRelatedWork W3012271503 @default.
- W2766479551 hasRelatedWork W3020775322 @default.
- W2766479551 hasRelatedWork W3126200462 @default.
- W2766479551 hasRelatedWork W3191884924 @default.
- W2766479551 hasRelatedWork W3208684764 @default.
- W2766479551 hasRelatedWork W177415438 @default.
- W2766479551 hasRelatedWork W2844917190 @default.
- W2766479551 isParatext "false" @default.
- W2766479551 isRetracted "false" @default.
- W2766479551 magId "2766479551" @default.
- W2766479551 workType "article" @default.