Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766482623> ?p ?o ?g. }
- W2766482623 abstract "Many prediction studies using real life measurements such as wind speed, power, electricity load and rainfall utilize linear autoregressive moving average (ARMA) based models due to their simplicity and general character. However, most of the real life applications exhibit nonlinear character and modelling them with linear time series may become problematic. Among nonlinear ARMA models, polynomial ARMA (PARMA) models belong to the class of linear-in-the-parameters. In this paper, we propose a reversible jump Markov chain Monte Carlo (RJMCMC) based complete model estimation method which estimates PARMA models with all their parameters including the nonlinearity degree. The proposed method is unique in the manner of estimating the nonlinearity degree and all other model orders and model coefficients at the same time. Moreover, in this paper, RJMCMC has been examined in an anomalous way by performing transitions between linear and nonlinear model spaces." @default.
- W2766482623 created "2017-11-10" @default.
- W2766482623 creator A5012328002 @default.
- W2766482623 creator A5038228706 @default.
- W2766482623 creator A5053586101 @default.
- W2766482623 date "2017-08-01" @default.
- W2766482623 modified "2023-09-22" @default.
- W2766482623 title "Nonlinear model selection for PARMA processes using RJMCMC" @default.
- W2766482623 cites W1571900022 @default.
- W2766482623 cites W1579385616 @default.
- W2766482623 cites W1972101081 @default.
- W2766482623 cites W1994295547 @default.
- W2766482623 cites W1994706696 @default.
- W2766482623 cites W2009591042 @default.
- W2766482623 cites W2023281112 @default.
- W2766482623 cites W2024715228 @default.
- W2766482623 cites W2040750108 @default.
- W2766482623 cites W2059335753 @default.
- W2766482623 cites W2070612147 @default.
- W2766482623 cites W2074715647 @default.
- W2766482623 cites W2089274743 @default.
- W2766482623 cites W2106706098 @default.
- W2766482623 cites W2134356662 @default.
- W2766482623 cites W2135803899 @default.
- W2766482623 cites W2136316633 @default.
- W2766482623 cites W2148534890 @default.
- W2766482623 cites W2168431040 @default.
- W2766482623 cites W2168813398 @default.
- W2766482623 cites W2221095923 @default.
- W2766482623 cites W2254535312 @default.
- W2766482623 cites W2562594033 @default.
- W2766482623 cites W3122429434 @default.
- W2766482623 cites W2114001875 @default.
- W2766482623 doi "https://doi.org/10.23919/eusipco.2017.8081571" @default.
- W2766482623 hasPublicationYear "2017" @default.
- W2766482623 type Work @default.
- W2766482623 sameAs 2766482623 @default.
- W2766482623 citedByCount "0" @default.
- W2766482623 crossrefType "proceedings-article" @default.
- W2766482623 hasAuthorship W2766482623A5012328002 @default.
- W2766482623 hasAuthorship W2766482623A5038228706 @default.
- W2766482623 hasAuthorship W2766482623A5053586101 @default.
- W2766482623 hasBestOaLocation W27664826232 @default.
- W2766482623 hasConcept C105795698 @default.
- W2766482623 hasConcept C111350023 @default.
- W2766482623 hasConcept C11413529 @default.
- W2766482623 hasConcept C121332964 @default.
- W2766482623 hasConcept C134306372 @default.
- W2766482623 hasConcept C154945302 @default.
- W2766482623 hasConcept C158622935 @default.
- W2766482623 hasConcept C159877910 @default.
- W2766482623 hasConcept C163175372 @default.
- W2766482623 hasConcept C19499675 @default.
- W2766482623 hasConcept C2780591659 @default.
- W2766482623 hasConcept C28826006 @default.
- W2766482623 hasConcept C33923547 @default.
- W2766482623 hasConcept C41008148 @default.
- W2766482623 hasConcept C62520636 @default.
- W2766482623 hasConcept C74883015 @default.
- W2766482623 hasConcept C90119067 @default.
- W2766482623 hasConcept C93959086 @default.
- W2766482623 hasConceptScore W2766482623C105795698 @default.
- W2766482623 hasConceptScore W2766482623C111350023 @default.
- W2766482623 hasConceptScore W2766482623C11413529 @default.
- W2766482623 hasConceptScore W2766482623C121332964 @default.
- W2766482623 hasConceptScore W2766482623C134306372 @default.
- W2766482623 hasConceptScore W2766482623C154945302 @default.
- W2766482623 hasConceptScore W2766482623C158622935 @default.
- W2766482623 hasConceptScore W2766482623C159877910 @default.
- W2766482623 hasConceptScore W2766482623C163175372 @default.
- W2766482623 hasConceptScore W2766482623C19499675 @default.
- W2766482623 hasConceptScore W2766482623C2780591659 @default.
- W2766482623 hasConceptScore W2766482623C28826006 @default.
- W2766482623 hasConceptScore W2766482623C33923547 @default.
- W2766482623 hasConceptScore W2766482623C41008148 @default.
- W2766482623 hasConceptScore W2766482623C62520636 @default.
- W2766482623 hasConceptScore W2766482623C74883015 @default.
- W2766482623 hasConceptScore W2766482623C90119067 @default.
- W2766482623 hasConceptScore W2766482623C93959086 @default.
- W2766482623 hasLocation W27664826231 @default.
- W2766482623 hasLocation W27664826232 @default.
- W2766482623 hasOpenAccess W2766482623 @default.
- W2766482623 hasPrimaryLocation W27664826231 @default.
- W2766482623 hasRelatedWork W1497970648 @default.
- W2766482623 hasRelatedWork W1605558431 @default.
- W2766482623 hasRelatedWork W1868098998 @default.
- W2766482623 hasRelatedWork W1967191198 @default.
- W2766482623 hasRelatedWork W1986292882 @default.
- W2766482623 hasRelatedWork W2014793247 @default.
- W2766482623 hasRelatedWork W2022749449 @default.
- W2766482623 hasRelatedWork W2028725248 @default.
- W2766482623 hasRelatedWork W2040382413 @default.
- W2766482623 hasRelatedWork W2113584388 @default.
- W2766482623 hasRelatedWork W2137454506 @default.
- W2766482623 hasRelatedWork W2387921640 @default.
- W2766482623 hasRelatedWork W2792800544 @default.
- W2766482623 hasRelatedWork W2883648549 @default.
- W2766482623 hasRelatedWork W2899935980 @default.
- W2766482623 hasRelatedWork W304218021 @default.
- W2766482623 hasRelatedWork W3140991215 @default.