Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766555139> ?p ?o ?g. }
- W2766555139 endingPage "69" @default.
- W2766555139 startingPage "58" @default.
- W2766555139 abstract "Land use regression (LUR) modelling is increasingly used in epidemiological studies to predict air pollution exposure. The use of stationary measurements at a limited number of locations to build a LUR model, however, can lead to an overestimation of its predictive abilities. We use opportunistic mobile monitoring to gather data at a high spatial resolution to build LUR models to predict annual average concentrations of black carbon (BC). The models explain a significant part of the variance in BC concentrations. However, the overall predictive performance remains low, due to input uncertainty and lack of predictive variables that can properly capture the complex characteristics of local concentrations. We stress the importance of using an appropriate cross-validation scheme to estimate the predictive performance of the model. By using independent data for the validation and excluding those data also during variable selection in the model building procedure, overly optimistic performance estimates are avoided." @default.
- W2766555139 created "2017-11-10" @default.
- W2766555139 creator A5001390697 @default.
- W2766555139 creator A5014127586 @default.
- W2766555139 creator A5025475037 @default.
- W2766555139 creator A5066885336 @default.
- W2766555139 creator A5069519911 @default.
- W2766555139 date "2018-01-01" @default.
- W2766555139 modified "2023-09-30" @default.
- W2766555139 title "Development and evaluation of land use regression models for black carbon based on bicycle and pedestrian measurements in the urban environment" @default.
- W2766555139 cites W1031755323 @default.
- W2766555139 cites W1876522080 @default.
- W2766555139 cites W1964357740 @default.
- W2766555139 cites W1969620550 @default.
- W2766555139 cites W1973282569 @default.
- W2766555139 cites W1991350060 @default.
- W2766555139 cites W2001451992 @default.
- W2766555139 cites W2004442774 @default.
- W2766555139 cites W2006607055 @default.
- W2766555139 cites W2016393793 @default.
- W2766555139 cites W2023097472 @default.
- W2766555139 cites W2023377202 @default.
- W2766555139 cites W2028765703 @default.
- W2766555139 cites W2031368496 @default.
- W2766555139 cites W2035930426 @default.
- W2766555139 cites W2042939072 @default.
- W2766555139 cites W2059911813 @default.
- W2766555139 cites W2065947772 @default.
- W2766555139 cites W2066544083 @default.
- W2766555139 cites W2072620344 @default.
- W2766555139 cites W2079098817 @default.
- W2766555139 cites W2083988711 @default.
- W2766555139 cites W2084554826 @default.
- W2766555139 cites W2088827030 @default.
- W2766555139 cites W2098637521 @default.
- W2766555139 cites W2101982704 @default.
- W2766555139 cites W2114978366 @default.
- W2766555139 cites W2146190867 @default.
- W2766555139 cites W2151302463 @default.
- W2766555139 cites W2159921561 @default.
- W2766555139 cites W2178257554 @default.
- W2766555139 cites W2181523240 @default.
- W2766555139 cites W2186856468 @default.
- W2766555139 cites W2209427089 @default.
- W2766555139 cites W2352017734 @default.
- W2766555139 cites W2434823106 @default.
- W2766555139 cites W2472430952 @default.
- W2766555139 doi "https://doi.org/10.1016/j.envsoft.2017.09.019" @default.
- W2766555139 hasPublicationYear "2018" @default.
- W2766555139 type Work @default.
- W2766555139 sameAs 2766555139 @default.
- W2766555139 citedByCount "42" @default.
- W2766555139 countsByYear W27665551392019 @default.
- W2766555139 countsByYear W27665551392020 @default.
- W2766555139 countsByYear W27665551392021 @default.
- W2766555139 countsByYear W27665551392022 @default.
- W2766555139 countsByYear W27665551392023 @default.
- W2766555139 crossrefType "journal-article" @default.
- W2766555139 hasAuthorship W2766555139A5001390697 @default.
- W2766555139 hasAuthorship W2766555139A5014127586 @default.
- W2766555139 hasAuthorship W2766555139A5025475037 @default.
- W2766555139 hasAuthorship W2766555139A5066885336 @default.
- W2766555139 hasAuthorship W2766555139A5069519911 @default.
- W2766555139 hasBestOaLocation W27665551392 @default.
- W2766555139 hasConcept C105795698 @default.
- W2766555139 hasConcept C121955636 @default.
- W2766555139 hasConcept C127413603 @default.
- W2766555139 hasConcept C134306372 @default.
- W2766555139 hasConcept C144133560 @default.
- W2766555139 hasConcept C147176958 @default.
- W2766555139 hasConcept C149782125 @default.
- W2766555139 hasConcept C152877465 @default.
- W2766555139 hasConcept C182365436 @default.
- W2766555139 hasConcept C196083921 @default.
- W2766555139 hasConcept C33923547 @default.
- W2766555139 hasConcept C39432304 @default.
- W2766555139 hasConcept C41008148 @default.
- W2766555139 hasConcept C45804977 @default.
- W2766555139 hasConcept C4792198 @default.
- W2766555139 hasConcept C83546350 @default.
- W2766555139 hasConceptScore W2766555139C105795698 @default.
- W2766555139 hasConceptScore W2766555139C121955636 @default.
- W2766555139 hasConceptScore W2766555139C127413603 @default.
- W2766555139 hasConceptScore W2766555139C134306372 @default.
- W2766555139 hasConceptScore W2766555139C144133560 @default.
- W2766555139 hasConceptScore W2766555139C147176958 @default.
- W2766555139 hasConceptScore W2766555139C149782125 @default.
- W2766555139 hasConceptScore W2766555139C152877465 @default.
- W2766555139 hasConceptScore W2766555139C182365436 @default.
- W2766555139 hasConceptScore W2766555139C196083921 @default.
- W2766555139 hasConceptScore W2766555139C33923547 @default.
- W2766555139 hasConceptScore W2766555139C39432304 @default.
- W2766555139 hasConceptScore W2766555139C41008148 @default.
- W2766555139 hasConceptScore W2766555139C45804977 @default.
- W2766555139 hasConceptScore W2766555139C4792198 @default.
- W2766555139 hasConceptScore W2766555139C83546350 @default.
- W2766555139 hasLocation W27665551391 @default.
- W2766555139 hasLocation W27665551392 @default.