Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766636840> ?p ?o ?g. }
- W2766636840 endingPage "863" @default.
- W2766636840 startingPage "854" @default.
- W2766636840 abstract "The aim of this work is to compare a novel exploratory chemometrics method, Common Components Analysis (CCA), with Principal Components Analysis (PCA) and Independent Components Analysis (ICA). CCA consists in adapting the multi-block statistical method known as Common Components and Specific Weights Analysis (CCSWA or ComDim) by applying it to a single data matrix, with one variable per block. As an application, the three methods were applied to SPME-GC-MS volatolomic signatures of livers in an attempt to reveal volatile organic compounds (VOCs) markers of chicken exposure to different types of micropollutants. An application of CCA to the initial SPME-GC-MS data revealed a drift in the sample Scores along CC2, as a function of injection order, probably resulting from time-related evolution in the instrument. This drift was eliminated by orthogonalization of the data set with respect to CC2, and the resulting data are used as the orthogonalized data input into each of the three methods. Since the first step in CCA is to norm-scale all the variables, preliminary data scaling has no effect on the results, so that CCA was applied only to orthogonalized SPME-GC-MS data, while, PCA and ICA were applied to the orthogonalized, orthogonalized and Pareto-scaled, and orthogonalized and autoscaled data. The comparison showed that PCA results were highly dependent on the scaling of variables, contrary to ICA where the data scaling did not have a strong influence. Nevertheless, for both PCA and ICA the clearest separations of exposed groups were obtained after autoscaling of variables. The main part of this work was to compare the CCA results using the orthogonalized data with those obtained with PCA and ICA applied to orthogonalized and autoscaled variables. The clearest separations of exposed chicken groups were obtained by CCA. CCA Loadings also clearly identified the variables contributing most to the Common Components giving separations. The PCA Loadings did not highlight the most influencing variables for each separation, whereas the ICA Loadings highlighted the same variables as did CCA. This study shows the potential of CCA for the extraction of pertinent information from a data matrix, using a procedure based on an original optimisation criterion, to produce results that are complementary, and in some cases may be superior, to those of PCA and ICA." @default.
- W2766636840 created "2017-11-10" @default.
- W2766636840 creator A5003945579 @default.
- W2766636840 creator A5006365527 @default.
- W2766636840 creator A5012149390 @default.
- W2766636840 creator A5030453960 @default.
- W2766636840 creator A5033837328 @default.
- W2766636840 creator A5039465281 @default.
- W2766636840 creator A5079033790 @default.
- W2766636840 creator A5088154532 @default.
- W2766636840 creator A5090866520 @default.
- W2766636840 date "2018-02-01" @default.
- W2766636840 modified "2023-10-15" @default.
- W2766636840 title "Comparison of common components analysis with principal components analysis and independent components analysis: Application to SPME-GC-MS volatolomic signatures" @default.
- W2766636840 cites W1967518713 @default.
- W2766636840 cites W1977627731 @default.
- W2766636840 cites W1987472539 @default.
- W2766636840 cites W1995314198 @default.
- W2766636840 cites W2003385782 @default.
- W2766636840 cites W2004933222 @default.
- W2766636840 cites W2010260547 @default.
- W2766636840 cites W2020023729 @default.
- W2766636840 cites W2025341678 @default.
- W2766636840 cites W2035859178 @default.
- W2766636840 cites W2036103055 @default.
- W2766636840 cites W2040312018 @default.
- W2766636840 cites W2060607713 @default.
- W2766636840 cites W2063281883 @default.
- W2766636840 cites W2069796584 @default.
- W2766636840 cites W2080077124 @default.
- W2766636840 cites W2083774996 @default.
- W2766636840 cites W2085971050 @default.
- W2766636840 cites W2089468765 @default.
- W2766636840 cites W2096977864 @default.
- W2766636840 cites W2124911115 @default.
- W2766636840 cites W2158240273 @default.
- W2766636840 cites W2166787454 @default.
- W2766636840 cites W2179861459 @default.
- W2766636840 cites W2218869304 @default.
- W2766636840 cites W2309339192 @default.
- W2766636840 cites W2322284525 @default.
- W2766636840 cites W2344893538 @default.
- W2766636840 cites W2477514576 @default.
- W2766636840 cites W2593604343 @default.
- W2766636840 cites W343158921 @default.
- W2766636840 cites W632359865 @default.
- W2766636840 doi "https://doi.org/10.1016/j.talanta.2017.10.025" @default.
- W2766636840 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29136906" @default.
- W2766636840 hasPublicationYear "2018" @default.
- W2766636840 type Work @default.
- W2766636840 sameAs 2766636840 @default.
- W2766636840 citedByCount "28" @default.
- W2766636840 countsByYear W27666368402018 @default.
- W2766636840 countsByYear W27666368402019 @default.
- W2766636840 countsByYear W27666368402020 @default.
- W2766636840 countsByYear W27666368402021 @default.
- W2766636840 countsByYear W27666368402022 @default.
- W2766636840 countsByYear W27666368402023 @default.
- W2766636840 crossrefType "journal-article" @default.
- W2766636840 hasAuthorship W2766636840A5003945579 @default.
- W2766636840 hasAuthorship W2766636840A5006365527 @default.
- W2766636840 hasAuthorship W2766636840A5012149390 @default.
- W2766636840 hasAuthorship W2766636840A5030453960 @default.
- W2766636840 hasAuthorship W2766636840A5033837328 @default.
- W2766636840 hasAuthorship W2766636840A5039465281 @default.
- W2766636840 hasAuthorship W2766636840A5079033790 @default.
- W2766636840 hasAuthorship W2766636840A5088154532 @default.
- W2766636840 hasAuthorship W2766636840A5090866520 @default.
- W2766636840 hasConcept C104317684 @default.
- W2766636840 hasConcept C105795698 @default.
- W2766636840 hasConcept C113196181 @default.
- W2766636840 hasConcept C11413529 @default.
- W2766636840 hasConcept C151304367 @default.
- W2766636840 hasConcept C153180895 @default.
- W2766636840 hasConcept C154945302 @default.
- W2766636840 hasConcept C185592680 @default.
- W2766636840 hasConcept C186060115 @default.
- W2766636840 hasConcept C193252679 @default.
- W2766636840 hasConcept C2524010 @default.
- W2766636840 hasConcept C27438332 @default.
- W2766636840 hasConcept C2780985081 @default.
- W2766636840 hasConcept C33923547 @default.
- W2766636840 hasConcept C41008148 @default.
- W2766636840 hasConcept C43617362 @default.
- W2766636840 hasConcept C44465124 @default.
- W2766636840 hasConcept C47559304 @default.
- W2766636840 hasConcept C51432778 @default.
- W2766636840 hasConcept C55493867 @default.
- W2766636840 hasConcept C86803240 @default.
- W2766636840 hasConcept C91682802 @default.
- W2766636840 hasConcept C99844830 @default.
- W2766636840 hasConceptScore W2766636840C104317684 @default.
- W2766636840 hasConceptScore W2766636840C105795698 @default.
- W2766636840 hasConceptScore W2766636840C113196181 @default.
- W2766636840 hasConceptScore W2766636840C11413529 @default.
- W2766636840 hasConceptScore W2766636840C151304367 @default.
- W2766636840 hasConceptScore W2766636840C153180895 @default.
- W2766636840 hasConceptScore W2766636840C154945302 @default.