Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766652604> ?p ?o ?g. }
- W2766652604 abstract "Assessing trust of cloud providers is considered to be a key factor to discriminate between them, especially once dealing with Big Data. In this paper, we apply Multiple Linear Regression (MLR) to develop a trust model for processing Big Data over diverse Clouds. The model relies on MLR to predict trust score of different cloud service providers. Therefore, support selection of the trustworthiness provider. Trust is evaluated not only on evidenced information collected about cloud resources availability, but also on past experiences with the cloud provider, and the reputation collected from other users experienced with the same cloud services. We use cross validation to test the consistency of the estimated regression equation, and we found that the model can perfectly be used to predict the response variable trust. We also, use bootstrap scheme to evaluate the confidence intervals for each pair of variables used in building our trust model." @default.
- W2766652604 created "2017-11-10" @default.
- W2766652604 creator A5013508860 @default.
- W2766652604 creator A5022074764 @default.
- W2766652604 creator A5057013558 @default.
- W2766652604 creator A5063896810 @default.
- W2766652604 date "2017-10-20" @default.
- W2766652604 modified "2023-10-04" @default.
- W2766652604 title "Trust Assessment-Based Multiple Linear Regression for Processing Big Data Over Diverse Clouds" @default.
- W2766652604 cites W1567635190 @default.
- W2766652604 cites W1674051985 @default.
- W2766652604 cites W1997517725 @default.
- W2766652604 cites W2039631019 @default.
- W2766652604 cites W2059407171 @default.
- W2766652604 cites W2094659217 @default.
- W2766652604 cites W2103366699 @default.
- W2766652604 cites W2123649966 @default.
- W2766652604 cites W2135363691 @default.
- W2766652604 cites W2161755043 @default.
- W2766652604 cites W2174648207 @default.
- W2766652604 cites W2202394768 @default.
- W2766652604 cites W2317218987 @default.
- W2766652604 cites W2342658046 @default.
- W2766652604 cites W2538867940 @default.
- W2766652604 cites W282881109 @default.
- W2766652604 cites W322953343 @default.
- W2766652604 cites W4242841269 @default.
- W2766652604 doi "https://doi.org/10.1007/978-3-319-67837-5_10" @default.
- W2766652604 hasPublicationYear "2017" @default.
- W2766652604 type Work @default.
- W2766652604 sameAs 2766652604 @default.
- W2766652604 citedByCount "0" @default.
- W2766652604 crossrefType "book-chapter" @default.
- W2766652604 hasAuthorship W2766652604A5013508860 @default.
- W2766652604 hasAuthorship W2766652604A5022074764 @default.
- W2766652604 hasAuthorship W2766652604A5057013558 @default.
- W2766652604 hasAuthorship W2766652604A5063896810 @default.
- W2766652604 hasConcept C111919701 @default.
- W2766652604 hasConcept C116537 @default.
- W2766652604 hasConcept C119857082 @default.
- W2766652604 hasConcept C124101348 @default.
- W2766652604 hasConcept C144024400 @default.
- W2766652604 hasConcept C144133560 @default.
- W2766652604 hasConcept C152877465 @default.
- W2766652604 hasConcept C153701036 @default.
- W2766652604 hasConcept C154945302 @default.
- W2766652604 hasConcept C162853370 @default.
- W2766652604 hasConcept C2522767166 @default.
- W2766652604 hasConcept C26517878 @default.
- W2766652604 hasConcept C2776436953 @default.
- W2766652604 hasConcept C2780378061 @default.
- W2766652604 hasConcept C36289849 @default.
- W2766652604 hasConcept C38652104 @default.
- W2766652604 hasConcept C41008148 @default.
- W2766652604 hasConcept C48798503 @default.
- W2766652604 hasConcept C48921125 @default.
- W2766652604 hasConcept C75684735 @default.
- W2766652604 hasConcept C79974875 @default.
- W2766652604 hasConceptScore W2766652604C111919701 @default.
- W2766652604 hasConceptScore W2766652604C116537 @default.
- W2766652604 hasConceptScore W2766652604C119857082 @default.
- W2766652604 hasConceptScore W2766652604C124101348 @default.
- W2766652604 hasConceptScore W2766652604C144024400 @default.
- W2766652604 hasConceptScore W2766652604C144133560 @default.
- W2766652604 hasConceptScore W2766652604C152877465 @default.
- W2766652604 hasConceptScore W2766652604C153701036 @default.
- W2766652604 hasConceptScore W2766652604C154945302 @default.
- W2766652604 hasConceptScore W2766652604C162853370 @default.
- W2766652604 hasConceptScore W2766652604C2522767166 @default.
- W2766652604 hasConceptScore W2766652604C26517878 @default.
- W2766652604 hasConceptScore W2766652604C2776436953 @default.
- W2766652604 hasConceptScore W2766652604C2780378061 @default.
- W2766652604 hasConceptScore W2766652604C36289849 @default.
- W2766652604 hasConceptScore W2766652604C38652104 @default.
- W2766652604 hasConceptScore W2766652604C41008148 @default.
- W2766652604 hasConceptScore W2766652604C48798503 @default.
- W2766652604 hasConceptScore W2766652604C48921125 @default.
- W2766652604 hasConceptScore W2766652604C75684735 @default.
- W2766652604 hasConceptScore W2766652604C79974875 @default.
- W2766652604 hasLocation W27666526041 @default.
- W2766652604 hasOpenAccess W2766652604 @default.
- W2766652604 hasPrimaryLocation W27666526041 @default.
- W2766652604 hasRelatedWork W1977615001 @default.
- W2766652604 hasRelatedWork W1997439656 @default.
- W2766652604 hasRelatedWork W2014687550 @default.
- W2766652604 hasRelatedWork W2063986647 @default.
- W2766652604 hasRelatedWork W2117817102 @default.
- W2766652604 hasRelatedWork W2142497293 @default.
- W2766652604 hasRelatedWork W2263242635 @default.
- W2766652604 hasRelatedWork W2357360286 @default.
- W2766652604 hasRelatedWork W2364596015 @default.
- W2766652604 hasRelatedWork W2384903991 @default.
- W2766652604 hasRelatedWork W2480278884 @default.
- W2766652604 hasRelatedWork W2545172663 @default.
- W2766652604 hasRelatedWork W2725448566 @default.
- W2766652604 hasRelatedWork W2755421991 @default.
- W2766652604 hasRelatedWork W2791472781 @default.
- W2766652604 hasRelatedWork W2907939832 @default.
- W2766652604 hasRelatedWork W2955314201 @default.
- W2766652604 hasRelatedWork W2979901082 @default.