Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766667131> ?p ?o ?g. }
- W2766667131 endingPage "13811" @default.
- W2766667131 startingPage "13800" @default.
- W2766667131 abstract "Several studies have applied the hidden Markov model (HMM) in multimode process monitoring. However, because the inherent duration probability density of HMM is exponential, which is inappropriate for modeling the multimode process, the performance of these HMM-based approaches is not satisfactory. As a result, the hidden semi-Markov model (HSMM), which integrated the mode duration probability into HMM, is combined with principal component analysis (PCA) to handle the multimode feature, named as HSMM-PCA. PCA is a powerful monitoring algorithm for the unimodal process, and HSMM specializes in mode division and identification. HSMM-PCA inherits the advantages of these two algorithms and hence it performs much better than the existing HMM-based approaches do. In addition, HSMM-PCA can detect the mode disorder fault, which challenges the most multimode approaches." @default.
- W2766667131 created "2017-11-10" @default.
- W2766667131 creator A5011900340 @default.
- W2766667131 creator A5074977317 @default.
- W2766667131 date "2017-11-13" @default.
- W2766667131 modified "2023-09-24" @default.
- W2766667131 title "Multimode Continuous Processes Monitoring Based on Hidden Semi-Markov Model and Principal Component Analysis" @default.
- W2766667131 cites W1460989600 @default.
- W2766667131 cites W1839283191 @default.
- W2766667131 cites W1974717100 @default.
- W2766667131 cites W1983157302 @default.
- W2766667131 cites W1986648041 @default.
- W2766667131 cites W1988383841 @default.
- W2766667131 cites W1995395516 @default.
- W2766667131 cites W2010001505 @default.
- W2766667131 cites W2016003630 @default.
- W2766667131 cites W2024622012 @default.
- W2766667131 cites W2036887017 @default.
- W2766667131 cites W2048407872 @default.
- W2766667131 cites W2060776628 @default.
- W2766667131 cites W2073476146 @default.
- W2766667131 cites W2075547951 @default.
- W2766667131 cites W2076618452 @default.
- W2766667131 cites W2103867289 @default.
- W2766667131 cites W2118036489 @default.
- W2766667131 cites W2153331007 @default.
- W2766667131 cites W2158225746 @default.
- W2766667131 cites W2245218972 @default.
- W2766667131 cites W2263103337 @default.
- W2766667131 cites W2283333890 @default.
- W2766667131 cites W2284118625 @default.
- W2766667131 cites W2290012437 @default.
- W2766667131 cites W2297767302 @default.
- W2766667131 cites W2315937580 @default.
- W2766667131 cites W2323052004 @default.
- W2766667131 cites W2327370144 @default.
- W2766667131 cites W2329523440 @default.
- W2766667131 cites W2471268452 @default.
- W2766667131 cites W2586871713 @default.
- W2766667131 cites W2588306484 @default.
- W2766667131 cites W2605309628 @default.
- W2766667131 cites W2607952714 @default.
- W2766667131 cites W2748547476 @default.
- W2766667131 cites W2766155847 @default.
- W2766667131 doi "https://doi.org/10.1021/acs.iecr.7b01721" @default.
- W2766667131 hasPublicationYear "2017" @default.
- W2766667131 type Work @default.
- W2766667131 sameAs 2766667131 @default.
- W2766667131 citedByCount "41" @default.
- W2766667131 countsByYear W27666671312018 @default.
- W2766667131 countsByYear W27666671312019 @default.
- W2766667131 countsByYear W27666671312020 @default.
- W2766667131 countsByYear W27666671312021 @default.
- W2766667131 countsByYear W27666671312022 @default.
- W2766667131 countsByYear W27666671312023 @default.
- W2766667131 crossrefType "journal-article" @default.
- W2766667131 hasAuthorship W2766667131A5011900340 @default.
- W2766667131 hasAuthorship W2766667131A5074977317 @default.
- W2766667131 hasConcept C101645829 @default.
- W2766667131 hasConcept C119857082 @default.
- W2766667131 hasConcept C121332964 @default.
- W2766667131 hasConcept C154945302 @default.
- W2766667131 hasConcept C168167062 @default.
- W2766667131 hasConcept C194232370 @default.
- W2766667131 hasConcept C23224414 @default.
- W2766667131 hasConcept C27438332 @default.
- W2766667131 hasConcept C41008148 @default.
- W2766667131 hasConcept C76155785 @default.
- W2766667131 hasConcept C97355855 @default.
- W2766667131 hasConcept C98763669 @default.
- W2766667131 hasConceptScore W2766667131C101645829 @default.
- W2766667131 hasConceptScore W2766667131C119857082 @default.
- W2766667131 hasConceptScore W2766667131C121332964 @default.
- W2766667131 hasConceptScore W2766667131C154945302 @default.
- W2766667131 hasConceptScore W2766667131C168167062 @default.
- W2766667131 hasConceptScore W2766667131C194232370 @default.
- W2766667131 hasConceptScore W2766667131C23224414 @default.
- W2766667131 hasConceptScore W2766667131C27438332 @default.
- W2766667131 hasConceptScore W2766667131C41008148 @default.
- W2766667131 hasConceptScore W2766667131C76155785 @default.
- W2766667131 hasConceptScore W2766667131C97355855 @default.
- W2766667131 hasConceptScore W2766667131C98763669 @default.
- W2766667131 hasFunder F4320321001 @default.
- W2766667131 hasIssue "46" @default.
- W2766667131 hasLocation W27666671311 @default.
- W2766667131 hasOpenAccess W2766667131 @default.
- W2766667131 hasPrimaryLocation W27666671311 @default.
- W2766667131 hasRelatedWork W1599670624 @default.
- W2766667131 hasRelatedWork W2016803373 @default.
- W2766667131 hasRelatedWork W2084166352 @default.
- W2766667131 hasRelatedWork W2358941527 @default.
- W2766667131 hasRelatedWork W2360796461 @default.
- W2766667131 hasRelatedWork W2364925730 @default.
- W2766667131 hasRelatedWork W2379533788 @default.
- W2766667131 hasRelatedWork W2389529561 @default.
- W2766667131 hasRelatedWork W2537112522 @default.
- W2766667131 hasRelatedWork W2900763005 @default.
- W2766667131 hasVolume "56" @default.