Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766672297> ?p ?o ?g. }
- W2766672297 abstract "As data-driven methods rise in popularity in materials science applications, a key question is how these machine learning models can be used to understand microstructure. Given the importance of process-structure-property relations throughout materials science, it seems logical that models that can leverage microstructural data would be more capable of predicting property information. While there have been some recent attempts to use convolutional neural networks to understand microstructural images, these early studies have focused only on which featurizations yield the highest machine learning model accuracy for a single data set. This paper explores the use of convolutional neural networks for classifying microstructure with a more holistic set of objectives in mind: generalization between data sets, number of features required, and interpretability." @default.
- W2766672297 created "2017-11-10" @default.
- W2766672297 creator A5003504961 @default.
- W2766672297 creator A5016287426 @default.
- W2766672297 creator A5053080365 @default.
- W2766672297 creator A5066339363 @default.
- W2766672297 creator A5078766874 @default.
- W2766672297 creator A5087591669 @default.
- W2766672297 date "2017-11-01" @default.
- W2766672297 modified "2023-09-24" @default.
- W2766672297 title "Building Data-driven Models with Microstructural Images: Generalization and Interpretability" @default.
- W2766672297 cites W1686810756 @default.
- W2766672297 cites W2012592962 @default.
- W2766672297 cites W2117539524 @default.
- W2766672297 cites W2144354855 @default.
- W2766672297 cites W2170738476 @default.
- W2766672297 cites W2253429366 @default.
- W2766672297 cites W2313966941 @default.
- W2766672297 cites W2325939864 @default.
- W2766672297 cites W2475287302 @default.
- W2766672297 cites W2520500207 @default.
- W2766672297 cites W2541686966 @default.
- W2766672297 cites W2555683692 @default.
- W2766672297 cites W2562939451 @default.
- W2766672297 cites W2568014457 @default.
- W2766672297 cites W2579354176 @default.
- W2766672297 cites W2585556182 @default.
- W2766672297 cites W2586155783 @default.
- W2766672297 cites W336365082 @default.
- W2766672297 doi "https://doi.org/10.48550/arxiv.1711.00404" @default.
- W2766672297 hasPublicationYear "2017" @default.
- W2766672297 type Work @default.
- W2766672297 sameAs 2766672297 @default.
- W2766672297 citedByCount "0" @default.
- W2766672297 crossrefType "posted-content" @default.
- W2766672297 hasAuthorship W2766672297A5003504961 @default.
- W2766672297 hasAuthorship W2766672297A5016287426 @default.
- W2766672297 hasAuthorship W2766672297A5053080365 @default.
- W2766672297 hasAuthorship W2766672297A5066339363 @default.
- W2766672297 hasAuthorship W2766672297A5078766874 @default.
- W2766672297 hasAuthorship W2766672297A5087591669 @default.
- W2766672297 hasBestOaLocation W27666722971 @default.
- W2766672297 hasConcept C111472728 @default.
- W2766672297 hasConcept C111919701 @default.
- W2766672297 hasConcept C119857082 @default.
- W2766672297 hasConcept C124101348 @default.
- W2766672297 hasConcept C134306372 @default.
- W2766672297 hasConcept C138885662 @default.
- W2766672297 hasConcept C153083717 @default.
- W2766672297 hasConcept C154945302 @default.
- W2766672297 hasConcept C15744967 @default.
- W2766672297 hasConcept C177148314 @default.
- W2766672297 hasConcept C177264268 @default.
- W2766672297 hasConcept C189950617 @default.
- W2766672297 hasConcept C199360897 @default.
- W2766672297 hasConcept C2522767166 @default.
- W2766672297 hasConcept C2780586970 @default.
- W2766672297 hasConcept C2781067378 @default.
- W2766672297 hasConcept C33923547 @default.
- W2766672297 hasConcept C41008148 @default.
- W2766672297 hasConcept C58489278 @default.
- W2766672297 hasConcept C77805123 @default.
- W2766672297 hasConcept C81363708 @default.
- W2766672297 hasConcept C98045186 @default.
- W2766672297 hasConceptScore W2766672297C111472728 @default.
- W2766672297 hasConceptScore W2766672297C111919701 @default.
- W2766672297 hasConceptScore W2766672297C119857082 @default.
- W2766672297 hasConceptScore W2766672297C124101348 @default.
- W2766672297 hasConceptScore W2766672297C134306372 @default.
- W2766672297 hasConceptScore W2766672297C138885662 @default.
- W2766672297 hasConceptScore W2766672297C153083717 @default.
- W2766672297 hasConceptScore W2766672297C154945302 @default.
- W2766672297 hasConceptScore W2766672297C15744967 @default.
- W2766672297 hasConceptScore W2766672297C177148314 @default.
- W2766672297 hasConceptScore W2766672297C177264268 @default.
- W2766672297 hasConceptScore W2766672297C189950617 @default.
- W2766672297 hasConceptScore W2766672297C199360897 @default.
- W2766672297 hasConceptScore W2766672297C2522767166 @default.
- W2766672297 hasConceptScore W2766672297C2780586970 @default.
- W2766672297 hasConceptScore W2766672297C2781067378 @default.
- W2766672297 hasConceptScore W2766672297C33923547 @default.
- W2766672297 hasConceptScore W2766672297C41008148 @default.
- W2766672297 hasConceptScore W2766672297C58489278 @default.
- W2766672297 hasConceptScore W2766672297C77805123 @default.
- W2766672297 hasConceptScore W2766672297C81363708 @default.
- W2766672297 hasConceptScore W2766672297C98045186 @default.
- W2766672297 hasLocation W27666722971 @default.
- W2766672297 hasLocation W27666722972 @default.
- W2766672297 hasOpenAccess W2766672297 @default.
- W2766672297 hasPrimaryLocation W27666722971 @default.
- W2766672297 hasRelatedWork W3006943036 @default.
- W2766672297 hasRelatedWork W3023163568 @default.
- W2766672297 hasRelatedWork W4200511449 @default.
- W2766672297 hasRelatedWork W4206534706 @default.
- W2766672297 hasRelatedWork W4229079080 @default.
- W2766672297 hasRelatedWork W4287776258 @default.
- W2766672297 hasRelatedWork W4310880831 @default.
- W2766672297 hasRelatedWork W4385957992 @default.
- W2766672297 hasRelatedWork W4385965371 @default.
- W2766672297 hasRelatedWork W4386025632 @default.