Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766677568> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2766677568 endingPage "7664" @default.
- W2766677568 startingPage "7654" @default.
- W2766677568 abstract "Surface roughness modeling is considered as a complicated task when uncontrollable parameters come into existence. This study deals with the modeling of surface roughness parameters Ra and Rt by considering machining parameters like cutting speed, feed rate and depth of cut along with uncontrollable parameters like tool flank wear and cutting tool vibrations in high speed dry turning of Ti-6Al-4V. Three Artificial Neural Network (ANN) techniques namely Multi Layered Perceptron (MLP), Radial Basis Function Neural Network (RBFNN) and Summation Wavelet – Extreme Learning Machine (SW-ELM) have been implemented using experimental data obtained from turning experiments using uncoated carbide inserts. A comparison has been done among the three techniques. SW-ELM outperformed with its prediction accuracy, MSE and execution time when compared to MLP and RBFNN." @default.
- W2766677568 created "2017-11-10" @default.
- W2766677568 creator A5014585444 @default.
- W2766677568 creator A5024665689 @default.
- W2766677568 creator A5053016278 @default.
- W2766677568 date "2017-01-01" @default.
- W2766677568 modified "2023-10-05" @default.
- W2766677568 title "Surface roughness modeling in high speed turning of Ti-6Al-4V – Artificial Neural Network approach" @default.
- W2766677568 cites W17072261 @default.
- W2766677568 cites W1963536096 @default.
- W2766677568 cites W1989557966 @default.
- W2766677568 cites W1997128020 @default.
- W2766677568 cites W2051264098 @default.
- W2766677568 cites W2052747489 @default.
- W2766677568 cites W2052876121 @default.
- W2766677568 cites W2060600711 @default.
- W2766677568 cites W2061036845 @default.
- W2766677568 cites W2069004083 @default.
- W2766677568 cites W2080879384 @default.
- W2766677568 cites W2084141404 @default.
- W2766677568 cites W2085783010 @default.
- W2766677568 cites W2088257018 @default.
- W2766677568 cites W2090883678 @default.
- W2766677568 cites W2098100436 @default.
- W2766677568 cites W2111022408 @default.
- W2766677568 cites W2113535566 @default.
- W2766677568 cites W2121753122 @default.
- W2766677568 cites W2124885947 @default.
- W2766677568 cites W2140097999 @default.
- W2766677568 cites W2162807413 @default.
- W2766677568 cites W4233185239 @default.
- W2766677568 doi "https://doi.org/10.1016/j.matpr.2017.07.099" @default.
- W2766677568 hasPublicationYear "2017" @default.
- W2766677568 type Work @default.
- W2766677568 sameAs 2766677568 @default.
- W2766677568 citedByCount "5" @default.
- W2766677568 countsByYear W27666775682018 @default.
- W2766677568 countsByYear W27666775682021 @default.
- W2766677568 countsByYear W27666775682022 @default.
- W2766677568 countsByYear W27666775682023 @default.
- W2766677568 crossrefType "journal-article" @default.
- W2766677568 hasAuthorship W2766677568A5014585444 @default.
- W2766677568 hasAuthorship W2766677568A5024665689 @default.
- W2766677568 hasAuthorship W2766677568A5053016278 @default.
- W2766677568 hasConcept C107365816 @default.
- W2766677568 hasConcept C121332964 @default.
- W2766677568 hasConcept C127413603 @default.
- W2766677568 hasConcept C154945302 @default.
- W2766677568 hasConcept C159985019 @default.
- W2766677568 hasConcept C179717631 @default.
- W2766677568 hasConcept C192562407 @default.
- W2766677568 hasConcept C198394728 @default.
- W2766677568 hasConcept C24890656 @default.
- W2766677568 hasConcept C2776450708 @default.
- W2766677568 hasConcept C2780383046 @default.
- W2766677568 hasConcept C41008148 @default.
- W2766677568 hasConcept C50644808 @default.
- W2766677568 hasConcept C523214423 @default.
- W2766677568 hasConcept C5941749 @default.
- W2766677568 hasConcept C60908668 @default.
- W2766677568 hasConcept C78519656 @default.
- W2766677568 hasConceptScore W2766677568C107365816 @default.
- W2766677568 hasConceptScore W2766677568C121332964 @default.
- W2766677568 hasConceptScore W2766677568C127413603 @default.
- W2766677568 hasConceptScore W2766677568C154945302 @default.
- W2766677568 hasConceptScore W2766677568C159985019 @default.
- W2766677568 hasConceptScore W2766677568C179717631 @default.
- W2766677568 hasConceptScore W2766677568C192562407 @default.
- W2766677568 hasConceptScore W2766677568C198394728 @default.
- W2766677568 hasConceptScore W2766677568C24890656 @default.
- W2766677568 hasConceptScore W2766677568C2776450708 @default.
- W2766677568 hasConceptScore W2766677568C2780383046 @default.
- W2766677568 hasConceptScore W2766677568C41008148 @default.
- W2766677568 hasConceptScore W2766677568C50644808 @default.
- W2766677568 hasConceptScore W2766677568C523214423 @default.
- W2766677568 hasConceptScore W2766677568C5941749 @default.
- W2766677568 hasConceptScore W2766677568C60908668 @default.
- W2766677568 hasConceptScore W2766677568C78519656 @default.
- W2766677568 hasIssue "8" @default.
- W2766677568 hasLocation W27666775681 @default.
- W2766677568 hasOpenAccess W2766677568 @default.
- W2766677568 hasPrimaryLocation W27666775681 @default.
- W2766677568 hasRelatedWork W1485334526 @default.
- W2766677568 hasRelatedWork W1554878117 @default.
- W2766677568 hasRelatedWork W2023999305 @default.
- W2766677568 hasRelatedWork W2141686962 @default.
- W2766677568 hasRelatedWork W2365271457 @default.
- W2766677568 hasRelatedWork W2965166879 @default.
- W2766677568 hasRelatedWork W2988283825 @default.
- W2766677568 hasRelatedWork W2994238937 @default.
- W2766677568 hasRelatedWork W3023140725 @default.
- W2766677568 hasRelatedWork W3089099968 @default.
- W2766677568 hasVolume "4" @default.
- W2766677568 isParatext "false" @default.
- W2766677568 isRetracted "false" @default.
- W2766677568 magId "2766677568" @default.
- W2766677568 workType "article" @default.