Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766702586> ?p ?o ?g. }
- W2766702586 endingPage "3807" @default.
- W2766702586 startingPage "3794" @default.
- W2766702586 abstract "Detecting anomalous traffic is a critical task for advanced Internet management. Many anomaly detection algorithms have been proposed recently. However, constrained by their matrix-based traffic data model, existing algorithms often suffer from low accuracy in anomaly detection. To fully utilize the multi-dimensional information hidden in the traffic data, this paper takes the initiative to investigate the potential and methodologies of performing tensor factorization for more accurate Internet anomaly detection. More specifically, we model the traffic data as a three-way tensor and formulate the anomaly detection problem as a robust tensor recovery problem with the constraints on the rank of the tensor and the cardinality of the anomaly set. These constraints, however, make the problem extremely hard to solve. Rather than resorting to the convex relaxation at the cost of low detection performance, we propose TensorDet to solve the problem directly and efficiently. To improve the anomaly detection accuracy and tensor factorization speed, TensorDet exploits the factorization structure with two novel techniques, sequential tensor truncation and two-phase anomaly detection. We have conducted extensive experiments using Internet traffic trace data Abilene and GÈANT. Compared with the state of art algorithms for tensor recovery and matrix-based anomaly detection, TensorDet can achieve significantly lower false positive rate and higher true positive rate. Particularly, benefiting from our well designed algorithm to reduce the computation cost of tensor factorization, the tensor factorization process in TensorDet is 5 (Abilene) and 13 (GÈANT) times faster than that of the traditional Tucker decomposition solution." @default.
- W2766702586 created "2017-11-10" @default.
- W2766702586 creator A5002841671 @default.
- W2766702586 creator A5006822602 @default.
- W2766702586 creator A5028824100 @default.
- W2766702586 creator A5030689390 @default.
- W2766702586 creator A5062119492 @default.
- W2766702586 creator A5067407624 @default.
- W2766702586 creator A5068873789 @default.
- W2766702586 date "2017-12-01" @default.
- W2766702586 modified "2023-10-16" @default.
- W2766702586 title "Fast Tensor Factorization for Accurate Internet Anomaly Detection" @default.
- W2766702586 cites W1506342804 @default.
- W2766702586 cites W1523479726 @default.
- W2766702586 cites W1814521481 @default.
- W2766702586 cites W1997564656 @default.
- W2766702586 cites W1999136078 @default.
- W2766702586 cites W2004026774 @default.
- W2766702586 cites W2013912476 @default.
- W2766702586 cites W2024165284 @default.
- W2766702586 cites W2034518400 @default.
- W2766702586 cites W2071128523 @default.
- W2766702586 cites W2071160338 @default.
- W2766702586 cites W2071729267 @default.
- W2766702586 cites W2078677240 @default.
- W2766702586 cites W2083797062 @default.
- W2766702586 cites W2091449379 @default.
- W2766702586 cites W2110458413 @default.
- W2766702586 cites W2114112812 @default.
- W2766702586 cites W2122646361 @default.
- W2766702586 cites W2128399454 @default.
- W2766702586 cites W2129812935 @default.
- W2766702586 cites W2132267493 @default.
- W2766702586 cites W2144182447 @default.
- W2766702586 cites W2145563843 @default.
- W2766702586 cites W2145962650 @default.
- W2766702586 cites W2152426255 @default.
- W2766702586 cites W2155378438 @default.
- W2766702586 cites W2157578436 @default.
- W2766702586 cites W2160551639 @default.
- W2766702586 cites W2161317557 @default.
- W2766702586 cites W2166858086 @default.
- W2766702586 cites W2169623711 @default.
- W2766702586 cites W2172246201 @default.
- W2766702586 cites W2494827994 @default.
- W2766702586 cites W2514260014 @default.
- W2766702586 cites W2611015177 @default.
- W2766702586 cites W2618534374 @default.
- W2766702586 cites W2763681708 @default.
- W2766702586 cites W3112270593 @default.
- W2766702586 cites W3138598418 @default.
- W2766702586 cites W4245906277 @default.
- W2766702586 doi "https://doi.org/10.1109/tnet.2017.2761704" @default.
- W2766702586 hasPublicationYear "2017" @default.
- W2766702586 type Work @default.
- W2766702586 sameAs 2766702586 @default.
- W2766702586 citedByCount "72" @default.
- W2766702586 countsByYear W27667025862018 @default.
- W2766702586 countsByYear W27667025862019 @default.
- W2766702586 countsByYear W27667025862020 @default.
- W2766702586 countsByYear W27667025862021 @default.
- W2766702586 countsByYear W27667025862022 @default.
- W2766702586 countsByYear W27667025862023 @default.
- W2766702586 crossrefType "journal-article" @default.
- W2766702586 hasAuthorship W2766702586A5002841671 @default.
- W2766702586 hasAuthorship W2766702586A5006822602 @default.
- W2766702586 hasAuthorship W2766702586A5028824100 @default.
- W2766702586 hasAuthorship W2766702586A5030689390 @default.
- W2766702586 hasAuthorship W2766702586A5062119492 @default.
- W2766702586 hasAuthorship W2766702586A5067407624 @default.
- W2766702586 hasAuthorship W2766702586A5068873789 @default.
- W2766702586 hasConcept C11413529 @default.
- W2766702586 hasConcept C121332964 @default.
- W2766702586 hasConcept C124101348 @default.
- W2766702586 hasConcept C12997251 @default.
- W2766702586 hasConcept C155281189 @default.
- W2766702586 hasConcept C158693339 @default.
- W2766702586 hasConcept C202444582 @default.
- W2766702586 hasConcept C26873012 @default.
- W2766702586 hasConcept C33923547 @default.
- W2766702586 hasConcept C41008148 @default.
- W2766702586 hasConcept C42355184 @default.
- W2766702586 hasConcept C62520636 @default.
- W2766702586 hasConcept C739882 @default.
- W2766702586 hasConceptScore W2766702586C11413529 @default.
- W2766702586 hasConceptScore W2766702586C121332964 @default.
- W2766702586 hasConceptScore W2766702586C124101348 @default.
- W2766702586 hasConceptScore W2766702586C12997251 @default.
- W2766702586 hasConceptScore W2766702586C155281189 @default.
- W2766702586 hasConceptScore W2766702586C158693339 @default.
- W2766702586 hasConceptScore W2766702586C202444582 @default.
- W2766702586 hasConceptScore W2766702586C26873012 @default.
- W2766702586 hasConceptScore W2766702586C33923547 @default.
- W2766702586 hasConceptScore W2766702586C41008148 @default.
- W2766702586 hasConceptScore W2766702586C42355184 @default.
- W2766702586 hasConceptScore W2766702586C62520636 @default.
- W2766702586 hasConceptScore W2766702586C739882 @default.
- W2766702586 hasFunder F4320321001 @default.