Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766703570> ?p ?o ?g. }
- W2766703570 endingPage "164113" @default.
- W2766703570 startingPage "164113" @default.
- W2766703570 abstract "The design and production of novel 2-dimensional materials has seen great progress in the last decade, prompting further exploration of the chemistry of such materials. Doping and hydrogenating graphene is an experimentally realised method of changing its surface chemistry, but there is still a great deal to be understood on how doping impacts on the adsorption of molecules. Developing this understanding is key to unlocking the potential applications of these materials. High throughput screening methods can provide particularly effective ways to explore vast chemical compositions of materials. Here, alchemical derivatives are used as a method to screen the dissociative adsorption energy of water molecules on various BN doped topologies of hydrogenated graphene. The predictions from alchemical derivatives are assessed by comparison to density functional theory. This screening method is found to predict dissociative adsorption energies that span a range of more than 2 eV, with a mean absolute error $<0.1$ eV. In addition, we show that the quality of such predictions can be readily assessed by examination of the Kohn-Sham highest occupied molecular orbital in the initial states. In this way, the root mean square error in the dissociative adsorption energies of water is reduced by almost an order of magnitude (down to $sim0.02$ eV) after filtering out poor predictions. The findings point the way towards a reliable use of first order alchemical derivatives for efficient screening procedures." @default.
- W2766703570 created "2017-11-10" @default.
- W2766703570 creator A5010133922 @default.
- W2766703570 creator A5056513432 @default.
- W2766703570 creator A5088793872 @default.
- W2766703570 date "2017-10-28" @default.
- W2766703570 modified "2023-09-24" @default.
- W2766703570 title "Exploring dissociative water adsorption on isoelectronically BN doped graphene using alchemical derivatives" @default.
- W2766703570 cites W1829451113 @default.
- W2766703570 cites W1865667476 @default.
- W2766703570 cites W1967024600 @default.
- W2766703570 cites W1969537524 @default.
- W2766703570 cites W1970127494 @default.
- W2766703570 cites W1979544533 @default.
- W2766703570 cites W1981368803 @default.
- W2766703570 cites W1981541921 @default.
- W2766703570 cites W1986118437 @default.
- W2766703570 cites W2000536749 @default.
- W2766703570 cites W2003193361 @default.
- W2766703570 cites W2007395042 @default.
- W2766703570 cites W2009458392 @default.
- W2766703570 cites W2010308698 @default.
- W2766703570 cites W2016819003 @default.
- W2766703570 cites W2022080248 @default.
- W2766703570 cites W2023271753 @default.
- W2766703570 cites W2024276736 @default.
- W2766703570 cites W2030082437 @default.
- W2766703570 cites W2031159754 @default.
- W2766703570 cites W2038533471 @default.
- W2766703570 cites W2040891489 @default.
- W2766703570 cites W2041670477 @default.
- W2766703570 cites W2043737771 @default.
- W2766703570 cites W2043784727 @default.
- W2766703570 cites W2049926022 @default.
- W2766703570 cites W2060745946 @default.
- W2766703570 cites W2069119183 @default.
- W2766703570 cites W2071331212 @default.
- W2766703570 cites W2075930604 @default.
- W2766703570 cites W2077497579 @default.
- W2766703570 cites W2079105963 @default.
- W2766703570 cites W2082513439 @default.
- W2766703570 cites W2082658405 @default.
- W2766703570 cites W2083222334 @default.
- W2766703570 cites W2087698390 @default.
- W2766703570 cites W2101958915 @default.
- W2766703570 cites W2105685140 @default.
- W2766703570 cites W2118225223 @default.
- W2766703570 cites W2119338182 @default.
- W2766703570 cites W2119910235 @default.
- W2766703570 cites W2123306226 @default.
- W2766703570 cites W2126421651 @default.
- W2766703570 cites W2127830793 @default.
- W2766703570 cites W2131686485 @default.
- W2766703570 cites W2135342828 @default.
- W2766703570 cites W2143467751 @default.
- W2766703570 cites W2143729162 @default.
- W2766703570 cites W2143981217 @default.
- W2766703570 cites W2144189083 @default.
- W2766703570 cites W2148284063 @default.
- W2766703570 cites W2151571625 @default.
- W2766703570 cites W2161121397 @default.
- W2766703570 cites W2167870891 @default.
- W2766703570 cites W2229300225 @default.
- W2766703570 cites W2292770293 @default.
- W2766703570 cites W2295531175 @default.
- W2766703570 cites W2295718671 @default.
- W2766703570 cites W2315972028 @default.
- W2766703570 cites W2324817090 @default.
- W2766703570 cites W2332684007 @default.
- W2766703570 cites W2460561656 @default.
- W2766703570 cites W2467674123 @default.
- W2766703570 cites W2509695771 @default.
- W2766703570 cites W2529978872 @default.
- W2766703570 cites W2546986866 @default.
- W2766703570 cites W2597184241 @default.
- W2766703570 cites W3098556645 @default.
- W2766703570 cites W3099539289 @default.
- W2766703570 cites W4248677023 @default.
- W2766703570 doi "https://doi.org/10.1063/1.4986314" @default.
- W2766703570 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29096500" @default.
- W2766703570 hasPublicationYear "2017" @default.
- W2766703570 type Work @default.
- W2766703570 sameAs 2766703570 @default.
- W2766703570 citedByCount "26" @default.
- W2766703570 countsByYear W27667035702018 @default.
- W2766703570 countsByYear W27667035702019 @default.
- W2766703570 countsByYear W27667035702020 @default.
- W2766703570 countsByYear W27667035702021 @default.
- W2766703570 countsByYear W27667035702022 @default.
- W2766703570 countsByYear W27667035702023 @default.
- W2766703570 crossrefType "journal-article" @default.
- W2766703570 hasAuthorship W2766703570A5010133922 @default.
- W2766703570 hasAuthorship W2766703570A5056513432 @default.
- W2766703570 hasAuthorship W2766703570A5088793872 @default.
- W2766703570 hasBestOaLocation W27667035702 @default.
- W2766703570 hasConcept C147597530 @default.
- W2766703570 hasConcept C147789679 @default.
- W2766703570 hasConcept C150394285 @default.