Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766754300> ?p ?o ?g. }
- W2766754300 endingPage "22822" @default.
- W2766754300 startingPage "22812" @default.
- W2766754300 abstract "Industry 4.0 is gaining more attention from the public, and thus the correlation between factories and nearby environmental pollution sources is a subject worth in-depth research. Among environmental issues, Particulate Matter2.5 (PM2.5) has received considerable attention in recent years from academic units and governments, and one of the secondary PM2.5 sources is the complex chemical reaction of exhaust gases emitted from factories and ammonia (NH3), with NH3 mostly coming from stock farming. Therefore, the correlation between stock farming data and pollutionsources emitted from factories can be examined by using an artificial neural network (ANN). The first target of this study is to investigate the correlation of factory air pollution source data and stock farming data nearby air monitoring stations to the annual mean PM2.5 concentration of nearby air monitoring stations. Second, the study uses Tensorflow to build an ANN model to analyze whether the industrial and stock farming data have an effect on the PM2.5 concentration. Weather data are taken in this experiment to learn about the correlation. The experimental results show that the Spearman’s correlation coefficient of the factory emitted air pollution data and stock farming data nearby air monitoring stations for the annual mean PM2.5 concentration is 0.6 to 0.9, representing positive correlation. The ANN experiment shows the annual mean PM2.5 concentration classification model with industrial data plus stock farming data plus weather data, in which the ANN classification accuracy is 0.75 as validated by mean square error (MSE) methods. Compared with the ANN classification model only with weather data, the MSE classification accuracy is 1.5. According to the two experiments, the industrial factor and stock farming factor are items that may influence the PM2.5 concentration change." @default.
- W2766754300 created "2017-11-10" @default.
- W2766754300 creator A5004990801 @default.
- W2766754300 creator A5048898146 @default.
- W2766754300 date "2017-01-01" @default.
- W2766754300 modified "2023-10-14" @default.
- W2766754300 title "Analysis of Correlation Between Secondary PM2.5 and Factory Pollution Sources by Using ANN and the Correlation Coefficient" @default.
- W2766754300 cites W1968599986 @default.
- W2766754300 cites W1981796233 @default.
- W2766754300 cites W1986259363 @default.
- W2766754300 cites W1986467800 @default.
- W2766754300 cites W2003953350 @default.
- W2766754300 cites W2010032406 @default.
- W2766754300 cites W2020487351 @default.
- W2766754300 cites W2029810562 @default.
- W2766754300 cites W2049384117 @default.
- W2766754300 cites W2060481160 @default.
- W2766754300 cites W2061034685 @default.
- W2766754300 cites W2089589938 @default.
- W2766754300 cites W2112125675 @default.
- W2766754300 cites W2160782283 @default.
- W2766754300 cites W2271570668 @default.
- W2766754300 cites W2297788108 @default.
- W2766754300 cites W2312694547 @default.
- W2766754300 cites W2338736535 @default.
- W2766754300 cites W2390708623 @default.
- W2766754300 cites W2481075154 @default.
- W2766754300 cites W2523989733 @default.
- W2766754300 cites W2549095296 @default.
- W2766754300 cites W2609326633 @default.
- W2766754300 cites W956374238 @default.
- W2766754300 doi "https://doi.org/10.1109/access.2017.2765337" @default.
- W2766754300 hasPublicationYear "2017" @default.
- W2766754300 type Work @default.
- W2766754300 sameAs 2766754300 @default.
- W2766754300 citedByCount "20" @default.
- W2766754300 countsByYear W27667543002019 @default.
- W2766754300 countsByYear W27667543002020 @default.
- W2766754300 countsByYear W27667543002021 @default.
- W2766754300 countsByYear W27667543002022 @default.
- W2766754300 countsByYear W27667543002023 @default.
- W2766754300 crossrefType "journal-article" @default.
- W2766754300 hasAuthorship W2766754300A5004990801 @default.
- W2766754300 hasAuthorship W2766754300A5048898146 @default.
- W2766754300 hasBestOaLocation W27667543001 @default.
- W2766754300 hasConcept C105795698 @default.
- W2766754300 hasConcept C117220453 @default.
- W2766754300 hasConcept C118518473 @default.
- W2766754300 hasConcept C119857082 @default.
- W2766754300 hasConcept C127413603 @default.
- W2766754300 hasConcept C139945424 @default.
- W2766754300 hasConcept C153294291 @default.
- W2766754300 hasConcept C166957645 @default.
- W2766754300 hasConcept C178790620 @default.
- W2766754300 hasConcept C185592680 @default.
- W2766754300 hasConcept C18903297 @default.
- W2766754300 hasConcept C199360897 @default.
- W2766754300 hasConcept C204036174 @default.
- W2766754300 hasConcept C205649164 @default.
- W2766754300 hasConcept C24245907 @default.
- W2766754300 hasConcept C2524010 @default.
- W2766754300 hasConcept C2780092901 @default.
- W2766754300 hasConcept C33923547 @default.
- W2766754300 hasConcept C39432304 @default.
- W2766754300 hasConcept C40149104 @default.
- W2766754300 hasConcept C41008148 @default.
- W2766754300 hasConcept C50644808 @default.
- W2766754300 hasConcept C521259446 @default.
- W2766754300 hasConcept C55078378 @default.
- W2766754300 hasConcept C559116025 @default.
- W2766754300 hasConcept C78519656 @default.
- W2766754300 hasConcept C86803240 @default.
- W2766754300 hasConcept C87717796 @default.
- W2766754300 hasConceptScore W2766754300C105795698 @default.
- W2766754300 hasConceptScore W2766754300C117220453 @default.
- W2766754300 hasConceptScore W2766754300C118518473 @default.
- W2766754300 hasConceptScore W2766754300C119857082 @default.
- W2766754300 hasConceptScore W2766754300C127413603 @default.
- W2766754300 hasConceptScore W2766754300C139945424 @default.
- W2766754300 hasConceptScore W2766754300C153294291 @default.
- W2766754300 hasConceptScore W2766754300C166957645 @default.
- W2766754300 hasConceptScore W2766754300C178790620 @default.
- W2766754300 hasConceptScore W2766754300C185592680 @default.
- W2766754300 hasConceptScore W2766754300C18903297 @default.
- W2766754300 hasConceptScore W2766754300C199360897 @default.
- W2766754300 hasConceptScore W2766754300C204036174 @default.
- W2766754300 hasConceptScore W2766754300C205649164 @default.
- W2766754300 hasConceptScore W2766754300C24245907 @default.
- W2766754300 hasConceptScore W2766754300C2524010 @default.
- W2766754300 hasConceptScore W2766754300C2780092901 @default.
- W2766754300 hasConceptScore W2766754300C33923547 @default.
- W2766754300 hasConceptScore W2766754300C39432304 @default.
- W2766754300 hasConceptScore W2766754300C40149104 @default.
- W2766754300 hasConceptScore W2766754300C41008148 @default.
- W2766754300 hasConceptScore W2766754300C50644808 @default.
- W2766754300 hasConceptScore W2766754300C521259446 @default.
- W2766754300 hasConceptScore W2766754300C55078378 @default.
- W2766754300 hasConceptScore W2766754300C559116025 @default.