Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766836699> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2766836699 abstract "Quantum mechanics has important consequences for machines that store and manipulate information. In particular, quantum computers might be more powerful than classical computers; examples of this include Shor's algorithm for factoring and discrete logarithms, and Grover's algorithm for black-box search. Because of these theoretical results, and the possibility that we may eventually succeed in building scalable quantum computers, it is interesting to study complexity classes based on quantum computation. QMA (Quantum Merlin-Arthur) is the quantum analogue of the class NP. There are a few QMA-complete problems, most of which are variants of the Local Hamiltonian problem introduced by Kitaev. In this dissertation we show some new QMA-complete problems which are very different from those known previously, and have applications in quantum chemistry. The first one is Consistency of Local Density Matrices : given a collection of density matrices describing different subsets of an n-qubit system (where each subset has constant size), decide whether these are consistent with some global state of all n qubits. This problem was first suggested by Aharonov. We show that it is QMA-complete, via an oracle reduction from Local Hamiltonian. Our reduction is based on algorithms for convex optimization with a membership oracle, due to Yudin and Nemirovskii. Next we show that two problems from quantum chemistry, Fermionic Local Hamiltonian and N- representability, are QMA-complete. These problems involve systems of fermions, rather than qubits; they arise in calculating the ground state energies of molecular systems. N-representability is particularly interesting, as it is a key component in recently developed numerical methods using the contracted Schrodinger equation. Although these problems have been studied since the 1960's, it is only recently that the theory of quantum computation has provided the right tools to properly characterize their complexity. Finally, we study some special cases of the Consistency problem, pertaining to 1-dimensional and stoquastic systems. We also give an alternative proof of a result due to Jaynes : whenever local density matrices are consistent, they are consistent with a Gibbs state" @default.
- W2766836699 created "2017-11-10" @default.
- W2766836699 creator A5088491304 @default.
- W2766836699 date "2007-01-01" @default.
- W2766836699 modified "2023-09-23" @default.
- W2766836699 title "The complexity of the consistency and N-representability problems for quantum states - eScholarship" @default.
- W2766836699 hasPublicationYear "2007" @default.
- W2766836699 type Work @default.
- W2766836699 sameAs 2766836699 @default.
- W2766836699 citedByCount "0" @default.
- W2766836699 crossrefType "journal-article" @default.
- W2766836699 hasAuthorship W2766836699A5088491304 @default.
- W2766836699 hasConcept C118615104 @default.
- W2766836699 hasConcept C121332964 @default.
- W2766836699 hasConcept C126255220 @default.
- W2766836699 hasConcept C130787639 @default.
- W2766836699 hasConcept C137019171 @default.
- W2766836699 hasConcept C169699857 @default.
- W2766836699 hasConcept C203087015 @default.
- W2766836699 hasConcept C311688 @default.
- W2766836699 hasConcept C33923547 @default.
- W2766836699 hasConcept C39637292 @default.
- W2766836699 hasConcept C41008148 @default.
- W2766836699 hasConcept C58053490 @default.
- W2766836699 hasConcept C62520636 @default.
- W2766836699 hasConcept C84114770 @default.
- W2766836699 hasConcept C92043244 @default.
- W2766836699 hasConceptScore W2766836699C118615104 @default.
- W2766836699 hasConceptScore W2766836699C121332964 @default.
- W2766836699 hasConceptScore W2766836699C126255220 @default.
- W2766836699 hasConceptScore W2766836699C130787639 @default.
- W2766836699 hasConceptScore W2766836699C137019171 @default.
- W2766836699 hasConceptScore W2766836699C169699857 @default.
- W2766836699 hasConceptScore W2766836699C203087015 @default.
- W2766836699 hasConceptScore W2766836699C311688 @default.
- W2766836699 hasConceptScore W2766836699C33923547 @default.
- W2766836699 hasConceptScore W2766836699C39637292 @default.
- W2766836699 hasConceptScore W2766836699C41008148 @default.
- W2766836699 hasConceptScore W2766836699C58053490 @default.
- W2766836699 hasConceptScore W2766836699C62520636 @default.
- W2766836699 hasConceptScore W2766836699C84114770 @default.
- W2766836699 hasConceptScore W2766836699C92043244 @default.
- W2766836699 hasLocation W27668366991 @default.
- W2766836699 hasOpenAccess W2766836699 @default.
- W2766836699 hasPrimaryLocation W27668366991 @default.
- W2766836699 hasRelatedWork W107195279 @default.
- W2766836699 hasRelatedWork W1619873028 @default.
- W2766836699 hasRelatedWork W1668036065 @default.
- W2766836699 hasRelatedWork W1827590847 @default.
- W2766836699 hasRelatedWork W2079270133 @default.
- W2766836699 hasRelatedWork W2129261735 @default.
- W2766836699 hasRelatedWork W2559726630 @default.
- W2766836699 hasRelatedWork W2601939557 @default.
- W2766836699 hasRelatedWork W2782015113 @default.
- W2766836699 hasRelatedWork W2949365722 @default.
- W2766836699 hasRelatedWork W2949872443 @default.
- W2766836699 hasRelatedWork W2962751663 @default.
- W2766836699 hasRelatedWork W3082369393 @default.
- W2766836699 hasRelatedWork W3098098030 @default.
- W2766836699 hasRelatedWork W3100674157 @default.
- W2766836699 hasRelatedWork W3211320463 @default.
- W2766836699 hasRelatedWork W335329583 @default.
- W2766836699 hasRelatedWork W41794807 @default.
- W2766836699 hasRelatedWork W48947528 @default.
- W2766836699 hasRelatedWork W2166716414 @default.
- W2766836699 isParatext "false" @default.
- W2766836699 isRetracted "false" @default.
- W2766836699 magId "2766836699" @default.
- W2766836699 workType "article" @default.