Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766846196> ?p ?o ?g. }
- W2766846196 endingPage "49" @default.
- W2766846196 startingPage "40" @default.
- W2766846196 abstract "In the chemical and petrochemical industries, spectroscopy-based online analysers are becoming common for process monitoring and control applications. A significant challenge in using these analysers as part of process monitoring and control loops is the large amount of personnel time required for calibration and maintenance of models which involve decision inputs such as whether an observation is an outlier, the number of latent variables in a model, type of pre-processing and when a calibration model has to be updated. Since no one measure works well for all applications, supervision by the process data analyst is required which invariably involves some level of subjectivity. In this paper, we focus on the detection of multivariate outliers in a calibration set. We propose a method which combines multiple outlier detection techniques to identify a set of outlying observations without operator input. Apart from the overall methodology, this work introduces several novelties. The system uses partial least squares (PLS) instead of principal component analysis (PCA) which is normally used for detecting multivariate outliers. A simple modification to the Mahalanobis distance was also proposed which appears to be more sensitive to outliers than the conventional Mahalanobis distance. The methodology also introduces the concept of a desirability function to enable automatic decision making based on multiple statistical measures for outlier detection. The methodology is demonstrated using Raman spectroscopy data collected from an industrial distillation process." @default.
- W2766846196 created "2017-11-10" @default.
- W2766846196 creator A5036849751 @default.
- W2766846196 creator A5048716955 @default.
- W2766846196 creator A5080923501 @default.
- W2766846196 creator A5087659780 @default.
- W2766846196 creator A5090152586 @default.
- W2766846196 date "2018-01-01" @default.
- W2766846196 modified "2023-10-18" @default.
- W2766846196 title "Automated weighted outlier detection technique for multivariate data" @default.
- W2766846196 cites W1903475782 @default.
- W2766846196 cites W1968098666 @default.
- W2766846196 cites W1989850594 @default.
- W2766846196 cites W1996118086 @default.
- W2766846196 cites W1999935041 @default.
- W2766846196 cites W2000724964 @default.
- W2766846196 cites W2005051528 @default.
- W2766846196 cites W2032657652 @default.
- W2766846196 cites W2039887474 @default.
- W2766846196 cites W2040638734 @default.
- W2766846196 cites W2042870344 @default.
- W2766846196 cites W2057283314 @default.
- W2766846196 cites W2059659103 @default.
- W2766846196 cites W2068302187 @default.
- W2766846196 cites W2072596720 @default.
- W2766846196 cites W2082597733 @default.
- W2766846196 cites W2089052299 @default.
- W2766846196 cites W2092215387 @default.
- W2766846196 cites W2096793442 @default.
- W2766846196 cites W2127293185 @default.
- W2766846196 cites W2130444042 @default.
- W2766846196 cites W2130496888 @default.
- W2766846196 cites W2137130182 @default.
- W2766846196 cites W2144476658 @default.
- W2766846196 cites W2164098787 @default.
- W2766846196 cites W2169217090 @default.
- W2766846196 cites W2170905369 @default.
- W2766846196 cites W2253395520 @default.
- W2766846196 cites W4230065791 @default.
- W2766846196 cites W47198768 @default.
- W2766846196 cites W64578218 @default.
- W2766846196 doi "https://doi.org/10.1016/j.conengprac.2017.09.018" @default.
- W2766846196 hasPublicationYear "2018" @default.
- W2766846196 type Work @default.
- W2766846196 sameAs 2766846196 @default.
- W2766846196 citedByCount "17" @default.
- W2766846196 countsByYear W27668461962018 @default.
- W2766846196 countsByYear W27668461962019 @default.
- W2766846196 countsByYear W27668461962020 @default.
- W2766846196 countsByYear W27668461962021 @default.
- W2766846196 countsByYear W27668461962022 @default.
- W2766846196 countsByYear W27668461962023 @default.
- W2766846196 crossrefType "journal-article" @default.
- W2766846196 hasAuthorship W2766846196A5036849751 @default.
- W2766846196 hasAuthorship W2766846196A5048716955 @default.
- W2766846196 hasAuthorship W2766846196A5080923501 @default.
- W2766846196 hasAuthorship W2766846196A5087659780 @default.
- W2766846196 hasAuthorship W2766846196A5090152586 @default.
- W2766846196 hasBestOaLocation W27668461962 @default.
- W2766846196 hasConcept C105795698 @default.
- W2766846196 hasConcept C111919701 @default.
- W2766846196 hasConcept C119857082 @default.
- W2766846196 hasConcept C124101348 @default.
- W2766846196 hasConcept C153180895 @default.
- W2766846196 hasConcept C154945302 @default.
- W2766846196 hasConcept C161584116 @default.
- W2766846196 hasConcept C165838908 @default.
- W2766846196 hasConcept C177264268 @default.
- W2766846196 hasConcept C1921717 @default.
- W2766846196 hasConcept C199360897 @default.
- W2766846196 hasConcept C22354355 @default.
- W2766846196 hasConcept C27438332 @default.
- W2766846196 hasConcept C33923547 @default.
- W2766846196 hasConcept C41008148 @default.
- W2766846196 hasConcept C58489278 @default.
- W2766846196 hasConcept C739882 @default.
- W2766846196 hasConcept C79337645 @default.
- W2766846196 hasConcept C98045186 @default.
- W2766846196 hasConceptScore W2766846196C105795698 @default.
- W2766846196 hasConceptScore W2766846196C111919701 @default.
- W2766846196 hasConceptScore W2766846196C119857082 @default.
- W2766846196 hasConceptScore W2766846196C124101348 @default.
- W2766846196 hasConceptScore W2766846196C153180895 @default.
- W2766846196 hasConceptScore W2766846196C154945302 @default.
- W2766846196 hasConceptScore W2766846196C161584116 @default.
- W2766846196 hasConceptScore W2766846196C165838908 @default.
- W2766846196 hasConceptScore W2766846196C177264268 @default.
- W2766846196 hasConceptScore W2766846196C1921717 @default.
- W2766846196 hasConceptScore W2766846196C199360897 @default.
- W2766846196 hasConceptScore W2766846196C22354355 @default.
- W2766846196 hasConceptScore W2766846196C27438332 @default.
- W2766846196 hasConceptScore W2766846196C33923547 @default.
- W2766846196 hasConceptScore W2766846196C41008148 @default.
- W2766846196 hasConceptScore W2766846196C58489278 @default.
- W2766846196 hasConceptScore W2766846196C739882 @default.
- W2766846196 hasConceptScore W2766846196C79337645 @default.
- W2766846196 hasConceptScore W2766846196C98045186 @default.
- W2766846196 hasFunder F4320334627 @default.