Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766852054> ?p ?o ?g. }
- W2766852054 endingPage "148" @default.
- W2766852054 startingPage "133" @default.
- W2766852054 abstract "In this study, the monthly mean daily global solar radiation (GSR) is modeled by artificial neural network (ANN), multilinear regression analysis (MLRA), and adaptive network-based fuzzy inference system (ANFIS) methods in the eight cities of Turkey. The results of three different models are compared and evaluated for these cities. The monthly means of daily sunshine duration, air temperature, relative humidity, wind speed, soil temperature, and GSR data of the cities are obtained from General Directorate of Meteorology and used to develop the models. Seven input parameters are determined using these meteorological data and some geographical equations. The root mean square error (RMSE), the mean absolute percentage error (MAPE), and the correlation coefficient (R) indicators are used to evaluate the performance of the models. For these performance indicators, the best values are obtained with ANN models." @default.
- W2766852054 created "2017-11-10" @default.
- W2766852054 creator A5022818356 @default.
- W2766852054 creator A5056075866 @default.
- W2766852054 date "2018-01-01" @default.
- W2766852054 modified "2023-09-24" @default.
- W2766852054 title "Comparison of ANN, Regression Analysis, and ANFIS Models in Estimation of Global Solar Radiation for Different Climatological Locations" @default.
- W2766852054 cites W1468252356 @default.
- W2766852054 cites W1800280049 @default.
- W2766852054 cites W1895707564 @default.
- W2766852054 cites W1965867673 @default.
- W2766852054 cites W1976007775 @default.
- W2766852054 cites W1976049118 @default.
- W2766852054 cites W1990163931 @default.
- W2766852054 cites W1994579155 @default.
- W2766852054 cites W1995722107 @default.
- W2766852054 cites W2007286990 @default.
- W2766852054 cites W2008460787 @default.
- W2766852054 cites W2015153626 @default.
- W2766852054 cites W2019207321 @default.
- W2766852054 cites W2020383304 @default.
- W2766852054 cites W2026602140 @default.
- W2766852054 cites W2027537775 @default.
- W2766852054 cites W2040102454 @default.
- W2766852054 cites W2041034585 @default.
- W2766852054 cites W2042194751 @default.
- W2766852054 cites W2064849162 @default.
- W2766852054 cites W2076256832 @default.
- W2766852054 cites W2088874310 @default.
- W2766852054 cites W2089487480 @default.
- W2766852054 cites W2089805406 @default.
- W2766852054 cites W2125520565 @default.
- W2766852054 cites W2147639597 @default.
- W2766852054 cites W2198593797 @default.
- W2766852054 cites W2210647982 @default.
- W2766852054 cites W2413982009 @default.
- W2766852054 cites W2422976942 @default.
- W2766852054 cites W2491661993 @default.
- W2766852054 cites W2533618104 @default.
- W2766852054 cites W2553152989 @default.
- W2766852054 cites W2560382578 @default.
- W2766852054 cites W2587088850 @default.
- W2766852054 cites W290561687 @default.
- W2766852054 cites W4211007335 @default.
- W2766852054 doi "https://doi.org/10.1016/b978-0-12-813734-5.00008-1" @default.
- W2766852054 hasPublicationYear "2018" @default.
- W2766852054 type Work @default.
- W2766852054 sameAs 2766852054 @default.
- W2766852054 citedByCount "6" @default.
- W2766852054 countsByYear W27668520542021 @default.
- W2766852054 countsByYear W27668520542022 @default.
- W2766852054 countsByYear W27668520542023 @default.
- W2766852054 crossrefType "book-chapter" @default.
- W2766852054 hasAuthorship W2766852054A5022818356 @default.
- W2766852054 hasAuthorship W2766852054A5056075866 @default.
- W2766852054 hasConcept C105795698 @default.
- W2766852054 hasConcept C119857082 @default.
- W2766852054 hasConcept C126674687 @default.
- W2766852054 hasConcept C128990827 @default.
- W2766852054 hasConcept C139945424 @default.
- W2766852054 hasConcept C150217764 @default.
- W2766852054 hasConcept C153294291 @default.
- W2766852054 hasConcept C154945302 @default.
- W2766852054 hasConcept C158960510 @default.
- W2766852054 hasConcept C161067210 @default.
- W2766852054 hasConcept C186108316 @default.
- W2766852054 hasConcept C188154048 @default.
- W2766852054 hasConcept C195975749 @default.
- W2766852054 hasConcept C197529216 @default.
- W2766852054 hasConcept C205649164 @default.
- W2766852054 hasConcept C2780092901 @default.
- W2766852054 hasConcept C33923547 @default.
- W2766852054 hasConcept C39432304 @default.
- W2766852054 hasConcept C41008148 @default.
- W2766852054 hasConcept C50644808 @default.
- W2766852054 hasConcept C58166 @default.
- W2766852054 hasConceptScore W2766852054C105795698 @default.
- W2766852054 hasConceptScore W2766852054C119857082 @default.
- W2766852054 hasConceptScore W2766852054C126674687 @default.
- W2766852054 hasConceptScore W2766852054C128990827 @default.
- W2766852054 hasConceptScore W2766852054C139945424 @default.
- W2766852054 hasConceptScore W2766852054C150217764 @default.
- W2766852054 hasConceptScore W2766852054C153294291 @default.
- W2766852054 hasConceptScore W2766852054C154945302 @default.
- W2766852054 hasConceptScore W2766852054C158960510 @default.
- W2766852054 hasConceptScore W2766852054C161067210 @default.
- W2766852054 hasConceptScore W2766852054C186108316 @default.
- W2766852054 hasConceptScore W2766852054C188154048 @default.
- W2766852054 hasConceptScore W2766852054C195975749 @default.
- W2766852054 hasConceptScore W2766852054C197529216 @default.
- W2766852054 hasConceptScore W2766852054C205649164 @default.
- W2766852054 hasConceptScore W2766852054C2780092901 @default.
- W2766852054 hasConceptScore W2766852054C33923547 @default.
- W2766852054 hasConceptScore W2766852054C39432304 @default.
- W2766852054 hasConceptScore W2766852054C41008148 @default.
- W2766852054 hasConceptScore W2766852054C50644808 @default.
- W2766852054 hasConceptScore W2766852054C58166 @default.
- W2766852054 hasLocation W27668520541 @default.