Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766878069> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2766878069 endingPage "31" @default.
- W2766878069 startingPage "9" @default.
- W2766878069 abstract "From the theoretical,mathematical point of view, even the fact that the evaluation of probability expresses somebody's opinion is then irrelevant. It is purely a question of studying it and saying whether it is coherent or not; i.e., whether it is free of, or affected by, intrinsic contradictions. In the same way, in the logic of certainty one ascertains the correctness of the deductions but not the accuracy of the factual data assumed as premises. Bruno de Finetti Theory of Probability I Symmetry arguments are tools of great power; therein lies not only their utility and attraction, but also their potential treachery. When they are invoked one may find, as did the sorcerer's apprentice, that the results somewhat exceed one's expectations. Sandy Zabell Symmetry and Its Discontents This chapter is a short introduction to the philosophy of inductive inference. After motivating the issues at stake, I'm going to focus on the two ideas that will be developed in this book: consistency and symmetry. Consistency is a minimal requirement for rational beliefs. It comes in two forms: static consistency guarantees that one's degrees of beliefs are not self-contradictory, and dynamic consistency requires that new information is incorporated consistently into one's system of beliefs. I am not going to present consistency arguments in full detail; my goal is, rather, to give a concise account of the ideas that underlie the standard theory of probabilistic learning, known as Bayesian conditioning or conditionalization , in order to set the stage for generalizing these ideas in subsequent chapters. Bayesian conditioning provides the basic framework for rational learning from factual propositions, but it does not always give rise to tractable models of inductive inference. In practice, nontrivial inductive inference requires degrees of beliefs to exhibit some kind of symmetry. Symmetries are useful because they simplify a domain of inquiry by distinguishing some of its features as invariant. In this chapter, we examine the most famous probabilistic symmetry, which is known as exchangeability and was studied extensively by Bruno de Finetti in his work on inductive inference." @default.
- W2766878069 created "2017-11-10" @default.
- W2766878069 creator A5034087841 @default.
- W2766878069 date "2017-10-25" @default.
- W2766878069 modified "2023-09-26" @default.
- W2766878069 title "Consistency and Symmetry" @default.
- W2766878069 doi "https://doi.org/10.1017/9781316335789.003" @default.
- W2766878069 hasPublicationYear "2017" @default.
- W2766878069 type Work @default.
- W2766878069 sameAs 2766878069 @default.
- W2766878069 citedByCount "0" @default.
- W2766878069 crossrefType "book-chapter" @default.
- W2766878069 hasAuthorship W2766878069A5034087841 @default.
- W2766878069 hasConcept C111472728 @default.
- W2766878069 hasConcept C11413529 @default.
- W2766878069 hasConcept C138885662 @default.
- W2766878069 hasConcept C144237770 @default.
- W2766878069 hasConcept C154945302 @default.
- W2766878069 hasConcept C177264268 @default.
- W2766878069 hasConcept C199343813 @default.
- W2766878069 hasConcept C199360897 @default.
- W2766878069 hasConcept C2776436953 @default.
- W2766878069 hasConcept C2777686260 @default.
- W2766878069 hasConcept C33923547 @default.
- W2766878069 hasConcept C41008148 @default.
- W2766878069 hasConcept C49937458 @default.
- W2766878069 hasConcept C55439883 @default.
- W2766878069 hasConcept C71924100 @default.
- W2766878069 hasConcept C7493553 @default.
- W2766878069 hasConceptScore W2766878069C111472728 @default.
- W2766878069 hasConceptScore W2766878069C11413529 @default.
- W2766878069 hasConceptScore W2766878069C138885662 @default.
- W2766878069 hasConceptScore W2766878069C144237770 @default.
- W2766878069 hasConceptScore W2766878069C154945302 @default.
- W2766878069 hasConceptScore W2766878069C177264268 @default.
- W2766878069 hasConceptScore W2766878069C199343813 @default.
- W2766878069 hasConceptScore W2766878069C199360897 @default.
- W2766878069 hasConceptScore W2766878069C2776436953 @default.
- W2766878069 hasConceptScore W2766878069C2777686260 @default.
- W2766878069 hasConceptScore W2766878069C33923547 @default.
- W2766878069 hasConceptScore W2766878069C41008148 @default.
- W2766878069 hasConceptScore W2766878069C49937458 @default.
- W2766878069 hasConceptScore W2766878069C55439883 @default.
- W2766878069 hasConceptScore W2766878069C71924100 @default.
- W2766878069 hasConceptScore W2766878069C7493553 @default.
- W2766878069 hasLocation W27668780691 @default.
- W2766878069 hasOpenAccess W2766878069 @default.
- W2766878069 hasPrimaryLocation W27668780691 @default.
- W2766878069 hasRelatedWork W1485761009 @default.
- W2766878069 hasRelatedWork W1865094660 @default.
- W2766878069 hasRelatedWork W1928033153 @default.
- W2766878069 hasRelatedWork W1978141252 @default.
- W2766878069 hasRelatedWork W1980571637 @default.
- W2766878069 hasRelatedWork W2000838844 @default.
- W2766878069 hasRelatedWork W2039265715 @default.
- W2766878069 hasRelatedWork W2050938976 @default.
- W2766878069 hasRelatedWork W2138949983 @default.
- W2766878069 hasRelatedWork W2151360247 @default.
- W2766878069 hasRelatedWork W2341401195 @default.
- W2766878069 hasRelatedWork W2390424425 @default.
- W2766878069 hasRelatedWork W2625922173 @default.
- W2766878069 hasRelatedWork W2763013782 @default.
- W2766878069 hasRelatedWork W2903671014 @default.
- W2766878069 hasRelatedWork W3164758602 @default.
- W2766878069 hasRelatedWork W3186997889 @default.
- W2766878069 hasRelatedWork W46151580 @default.
- W2766878069 hasRelatedWork W70781712 @default.
- W2766878069 hasRelatedWork W7845876 @default.
- W2766878069 isParatext "false" @default.
- W2766878069 isRetracted "false" @default.
- W2766878069 magId "2766878069" @default.
- W2766878069 workType "book-chapter" @default.