Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766888300> ?p ?o ?g. }
- W2766888300 endingPage "e0185759" @default.
- W2766888300 startingPage "e0185759" @default.
- W2766888300 abstract "The interplay between hemodynamic-based markers of cortical activity (e.g. fMRI and optical intrinsic signal imaging), which are an indirect and relatively slow report of neural activity, and underlying synaptic electrical and metabolic activity through neurovascular coupling is a topic of ongoing research and debate. As application of resting state functional connectivity measures is extended further into topics such as brain development, aging and disease, the importance of understanding the fundamental physiological basis for functional connectivity will grow. Here we extend functional connectivity analysis from hemodynamic- to calcium-based imaging. Transgenic mice (n = 7) expressing a fluorescent calcium indicator (GCaMP6) driven by the Thy1 promoter in glutamatergic neurons were imaged transcranially in both anesthetized (using ketamine/xylazine) and awake states. Sequential LED illumination (λ = 454, 523, 595, 640nm) enabled concurrent imaging of both GCaMP6 fluorescence emission (corrected for hemoglobin absorption) and hemodynamics. Functional connectivity network maps were constructed for infraslow (0.009–0.08Hz), intermediate (0.08–0.4Hz), and high (0.4–4.0Hz) frequency bands. At infraslow and intermediate frequencies, commonly used in BOLD fMRI and fcOIS studies of functional connectivity and implicated in neurovascular coupling mechanisms, GCaMP6 and HbO2 functional connectivity structures were in high agreement, both qualitatively and also quantitatively through a measure of spatial similarity. The spontaneous dynamics of both contrasts had the highest correlation when the GCaMP6 signal was delayed with a ~0.6–1.5s temporal offset. Within the higher-frequency delta band, sensitive to slow wave sleep oscillations in non-REM sleep and anesthesia, we evaluate the speed with which the connectivity analysis stabilized and found that the functional connectivity maps captured putative network structure within time window lengths as short as 30 seconds. Homotopic GCaMP6 functional connectivity maps at 0.4–4.0Hz in the anesthetized states show a striking correlated and anti-correlated structure along the anterior to posterior axis. This structure is potentially explained in part by observed propagation of delta-band activity from frontal somatomotor regions to visuoparietal areas. During awake imaging, this spatio-temporal quality is altered, and a more complex and detailed functional connectivity structure is observed. The combined calcium/hemoglobin imaging technique described here will enable the dissociation of changes in ionic and hemodynamic functional structure and neurovascular coupling and provide a framework for subsequent studies of neurological disease such as stroke." @default.
- W2766888300 created "2017-11-10" @default.
- W2766888300 creator A5012767942 @default.
- W2766888300 creator A5017557589 @default.
- W2766888300 creator A5023759450 @default.
- W2766888300 creator A5026837899 @default.
- W2766888300 creator A5030671314 @default.
- W2766888300 creator A5030786272 @default.
- W2766888300 creator A5033648779 @default.
- W2766888300 creator A5035460454 @default.
- W2766888300 creator A5053533043 @default.
- W2766888300 creator A5070489918 @default.
- W2766888300 date "2017-10-19" @default.
- W2766888300 modified "2023-10-18" @default.
- W2766888300 title "Functional connectivity structure of cortical calcium dynamics in anesthetized and awake mice" @default.
- W2766888300 cites W1537911849 @default.
- W2766888300 cites W1687468892 @default.
- W2766888300 cites W1853766545 @default.
- W2766888300 cites W1964314167 @default.
- W2766888300 cites W1969580888 @default.
- W2766888300 cites W1970695058 @default.
- W2766888300 cites W1973545621 @default.
- W2766888300 cites W1977647750 @default.
- W2766888300 cites W1979631864 @default.
- W2766888300 cites W1983712592 @default.
- W2766888300 cites W1984737307 @default.
- W2766888300 cites W1984744633 @default.
- W2766888300 cites W1989452564 @default.
- W2766888300 cites W1989470236 @default.
- W2766888300 cites W1992999803 @default.
- W2766888300 cites W1997882069 @default.
- W2766888300 cites W1998242504 @default.
- W2766888300 cites W2000809016 @default.
- W2766888300 cites W2003062381 @default.
- W2766888300 cites W2003176741 @default.
- W2766888300 cites W2006152973 @default.
- W2766888300 cites W2006732462 @default.
- W2766888300 cites W2011351046 @default.
- W2766888300 cites W2012849700 @default.
- W2766888300 cites W2015304937 @default.
- W2766888300 cites W2016487986 @default.
- W2766888300 cites W2020429579 @default.
- W2766888300 cites W2022387796 @default.
- W2766888300 cites W2024446380 @default.
- W2766888300 cites W2050375359 @default.
- W2766888300 cites W2053695679 @default.
- W2766888300 cites W2053703999 @default.
- W2766888300 cites W2062619493 @default.
- W2766888300 cites W2065496603 @default.
- W2766888300 cites W2071317968 @default.
- W2766888300 cites W2081718320 @default.
- W2766888300 cites W2083268412 @default.
- W2766888300 cites W2084589427 @default.
- W2766888300 cites W2086493527 @default.
- W2766888300 cites W2092079460 @default.
- W2766888300 cites W2094383984 @default.
- W2766888300 cites W2104591424 @default.
- W2766888300 cites W2109234881 @default.
- W2766888300 cites W2109703439 @default.
- W2766888300 cites W2114104729 @default.
- W2766888300 cites W2135475851 @default.
- W2766888300 cites W2135780113 @default.
- W2766888300 cites W2137619324 @default.
- W2766888300 cites W2142379914 @default.
- W2766888300 cites W2154973010 @default.
- W2766888300 cites W2156997013 @default.
- W2766888300 cites W2171332611 @default.
- W2766888300 cites W2192685344 @default.
- W2766888300 cites W2220400500 @default.
- W2766888300 cites W2333048336 @default.
- W2766888300 cites W2341571008 @default.
- W2766888300 cites W2402398548 @default.
- W2766888300 cites W2421232827 @default.
- W2766888300 cites W2471644372 @default.
- W2766888300 cites W2566652232 @default.
- W2766888300 cites W2612019735 @default.
- W2766888300 cites W4295831928 @default.
- W2766888300 doi "https://doi.org/10.1371/journal.pone.0185759" @default.
- W2766888300 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5648115" @default.
- W2766888300 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29049297" @default.
- W2766888300 hasPublicationYear "2017" @default.
- W2766888300 type Work @default.
- W2766888300 sameAs 2766888300 @default.
- W2766888300 citedByCount "88" @default.
- W2766888300 countsByYear W27668883002017 @default.
- W2766888300 countsByYear W27668883002018 @default.
- W2766888300 countsByYear W27668883002019 @default.
- W2766888300 countsByYear W27668883002020 @default.
- W2766888300 countsByYear W27668883002021 @default.
- W2766888300 countsByYear W27668883002022 @default.
- W2766888300 countsByYear W27668883002023 @default.
- W2766888300 crossrefType "journal-article" @default.
- W2766888300 hasAuthorship W2766888300A5012767942 @default.
- W2766888300 hasAuthorship W2766888300A5017557589 @default.
- W2766888300 hasAuthorship W2766888300A5023759450 @default.
- W2766888300 hasAuthorship W2766888300A5026837899 @default.
- W2766888300 hasAuthorship W2766888300A5030671314 @default.
- W2766888300 hasAuthorship W2766888300A5030786272 @default.