Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766895153> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2766895153 abstract "Companies leverage plenty of monitoring tools collecting performance metrics of Telecom BSS to assure it is in good status. The influence of the system failure is variance, depending on the length of time to finish the system reparation. The metrics collected by monitoring tools may have the indication of the system failure, and the maintainers have chances to foresee a system failure from those metrics. However, the metrics collected by the monitoring tools are too much, and some hints may hide in combinations of multiple metrics. We leverage machine learning approaches to address this problem. We used several machine learning tools and algorithms to explore the configuration of the machine learning models to obtain the model performing the best to our dataset. We compared many algorithms like linear SVM, SVM with RBF kernel, random forest and fully connected neural network. We also introduced an anomaly detection learning technique to see if better performance can be achieved. We found SVM with RBF kernel can achieve the best performance to our dataset, and we conducted a comprehensive grid search of the hyperparameters of the RBF SVM to found the best configuration to our dataset. We achieve F-score 21 in the final explored result and the model can predict 15% of the system failure 60 minutes in advance." @default.
- W2766895153 created "2017-11-10" @default.
- W2766895153 creator A5037926939 @default.
- W2766895153 creator A5066147862 @default.
- W2766895153 creator A5082146813 @default.
- W2766895153 date "2017-09-01" @default.
- W2766895153 modified "2023-09-26" @default.
- W2766895153 title "The exploration of machine learning for abnormal prediction model of telecom business support system" @default.
- W2766895153 cites W1184354083 @default.
- W2766895153 cites W2022959138 @default.
- W2766895153 cites W2132870739 @default.
- W2766895153 cites W2551769470 @default.
- W2766895153 doi "https://doi.org/10.1109/apnoms.2017.8094039" @default.
- W2766895153 hasPublicationYear "2017" @default.
- W2766895153 type Work @default.
- W2766895153 sameAs 2766895153 @default.
- W2766895153 citedByCount "1" @default.
- W2766895153 countsByYear W27668951532023 @default.
- W2766895153 crossrefType "proceedings-article" @default.
- W2766895153 hasAuthorship W2766895153A5037926939 @default.
- W2766895153 hasAuthorship W2766895153A5066147862 @default.
- W2766895153 hasAuthorship W2766895153A5082146813 @default.
- W2766895153 hasConcept C10485038 @default.
- W2766895153 hasConcept C114614502 @default.
- W2766895153 hasConcept C119857082 @default.
- W2766895153 hasConcept C12267149 @default.
- W2766895153 hasConcept C124101348 @default.
- W2766895153 hasConcept C153083717 @default.
- W2766895153 hasConcept C154945302 @default.
- W2766895153 hasConcept C169258074 @default.
- W2766895153 hasConcept C33923547 @default.
- W2766895153 hasConcept C41008148 @default.
- W2766895153 hasConcept C50644808 @default.
- W2766895153 hasConcept C739882 @default.
- W2766895153 hasConcept C74193536 @default.
- W2766895153 hasConcept C8642999 @default.
- W2766895153 hasConceptScore W2766895153C10485038 @default.
- W2766895153 hasConceptScore W2766895153C114614502 @default.
- W2766895153 hasConceptScore W2766895153C119857082 @default.
- W2766895153 hasConceptScore W2766895153C12267149 @default.
- W2766895153 hasConceptScore W2766895153C124101348 @default.
- W2766895153 hasConceptScore W2766895153C153083717 @default.
- W2766895153 hasConceptScore W2766895153C154945302 @default.
- W2766895153 hasConceptScore W2766895153C169258074 @default.
- W2766895153 hasConceptScore W2766895153C33923547 @default.
- W2766895153 hasConceptScore W2766895153C41008148 @default.
- W2766895153 hasConceptScore W2766895153C50644808 @default.
- W2766895153 hasConceptScore W2766895153C739882 @default.
- W2766895153 hasConceptScore W2766895153C74193536 @default.
- W2766895153 hasConceptScore W2766895153C8642999 @default.
- W2766895153 hasLocation W27668951531 @default.
- W2766895153 hasOpenAccess W2766895153 @default.
- W2766895153 hasPrimaryLocation W27668951531 @default.
- W2766895153 hasRelatedWork W3096565539 @default.
- W2766895153 hasRelatedWork W3195168932 @default.
- W2766895153 hasRelatedWork W4200551482 @default.
- W2766895153 hasRelatedWork W4283697347 @default.
- W2766895153 hasRelatedWork W4295309597 @default.
- W2766895153 hasRelatedWork W4317600379 @default.
- W2766895153 hasRelatedWork W4320494184 @default.
- W2766895153 hasRelatedWork W4322775603 @default.
- W2766895153 hasRelatedWork W4362544620 @default.
- W2766895153 hasRelatedWork W4386963568 @default.
- W2766895153 isParatext "false" @default.
- W2766895153 isRetracted "false" @default.
- W2766895153 magId "2766895153" @default.
- W2766895153 workType "article" @default.