Matches in SemOpenAlex for { <https://semopenalex.org/work/W2766926079> ?p ?o ?g. }
- W2766926079 endingPage "23132" @default.
- W2766926079 startingPage "23121" @default.
- W2766926079 abstract "Kernel principal component analysis (KPCA) has been a state-of-the-art nonlinear process monitoring method. However, KPCA assumes the single operation mode while the real industrial processes often run under multiple operation conditions. In order to monitor the nonlinear multimode processes effectively, this paper proposes a modified KPCA method assisted by the local statistical analysis, referred to as local statistics KPCA (LSKPCA). In the proposed method, two kinds of strategies, including local probability density estimation and statistics pattern analysis, are integrated to improve the traditional KPCA method. To handle the multimode characteristic of industrial processes, local probability density estimation is developed to transform the monitored variables into their probability density values, which follow the unimodal data distribution. For further extracting the statistical information among the process data, statistics pattern analysis technique is applied to capture various orders of statistics, including one-order, second-order, and high-order ones, which constitute the statistics pattern matrix of the monitored data. Furthermore, KPCA modeling is performed on the statistics pattern matrix. The simulations on one numerical example and the continuous stirred tank reactor system demonstrate that the proposed LSKPCA method has the superior fault detection performance compared with the conventional KPCA method." @default.
- W2766926079 created "2017-11-10" @default.
- W2766926079 creator A5022096691 @default.
- W2766926079 creator A5045855817 @default.
- W2766926079 creator A5080805825 @default.
- W2766926079 date "2017-01-01" @default.
- W2766926079 modified "2023-10-16" @default.
- W2766926079 title "Nonlinear Multimode Industrial Process Fault Detection Using Modified Kernel Principal Component Analysis" @default.
- W2766926079 cites W1728456629 @default.
- W2766926079 cites W1807338980 @default.
- W2766926079 cites W1937143449 @default.
- W2766926079 cites W1965134664 @default.
- W2766926079 cites W1967066850 @default.
- W2766926079 cites W1970461315 @default.
- W2766926079 cites W1974156558 @default.
- W2766926079 cites W1979553776 @default.
- W2766926079 cites W1988455509 @default.
- W2766926079 cites W1990384678 @default.
- W2766926079 cites W1992844383 @default.
- W2766926079 cites W1993267542 @default.
- W2766926079 cites W1993930017 @default.
- W2766926079 cites W1994505190 @default.
- W2766926079 cites W1995235836 @default.
- W2766926079 cites W2009883891 @default.
- W2766926079 cites W2011054000 @default.
- W2766926079 cites W2014241185 @default.
- W2766926079 cites W2014540231 @default.
- W2766926079 cites W2014619221 @default.
- W2766926079 cites W2027681681 @default.
- W2766926079 cites W2027807366 @default.
- W2766926079 cites W2037927978 @default.
- W2766926079 cites W2038180527 @default.
- W2766926079 cites W2057130336 @default.
- W2766926079 cites W2060776628 @default.
- W2766926079 cites W2063255184 @default.
- W2766926079 cites W2066102264 @default.
- W2766926079 cites W2068193536 @default.
- W2766926079 cites W2068561554 @default.
- W2766926079 cites W2076997107 @default.
- W2766926079 cites W2086410427 @default.
- W2766926079 cites W2098571698 @default.
- W2766926079 cites W2119904651 @default.
- W2766926079 cites W2139833307 @default.
- W2766926079 cites W2140095548 @default.
- W2766926079 cites W2142231140 @default.
- W2766926079 cites W2145159661 @default.
- W2766926079 cites W2170447682 @default.
- W2766926079 cites W219084219 @default.
- W2766926079 cites W2315308166 @default.
- W2766926079 cites W2322097696 @default.
- W2766926079 cites W2344734818 @default.
- W2766926079 cites W2344745309 @default.
- W2766926079 cites W2347027361 @default.
- W2766926079 cites W2431033487 @default.
- W2766926079 cites W2442657908 @default.
- W2766926079 cites W2470068462 @default.
- W2766926079 cites W2519348275 @default.
- W2766926079 cites W2520169384 @default.
- W2766926079 cites W2522176240 @default.
- W2766926079 cites W2550729902 @default.
- W2766926079 cites W2568466811 @default.
- W2766926079 cites W2606788990 @default.
- W2766926079 cites W4233014035 @default.
- W2766926079 doi "https://doi.org/10.1109/access.2017.2764518" @default.
- W2766926079 hasPublicationYear "2017" @default.
- W2766926079 type Work @default.
- W2766926079 sameAs 2766926079 @default.
- W2766926079 citedByCount "19" @default.
- W2766926079 countsByYear W27669260792018 @default.
- W2766926079 countsByYear W27669260792019 @default.
- W2766926079 countsByYear W27669260792020 @default.
- W2766926079 countsByYear W27669260792021 @default.
- W2766926079 countsByYear W27669260792022 @default.
- W2766926079 countsByYear W27669260792023 @default.
- W2766926079 crossrefType "journal-article" @default.
- W2766926079 hasAuthorship W2766926079A5022096691 @default.
- W2766926079 hasAuthorship W2766926079A5045855817 @default.
- W2766926079 hasAuthorship W2766926079A5080805825 @default.
- W2766926079 hasBestOaLocation W27669260791 @default.
- W2766926079 hasConcept C104267543 @default.
- W2766926079 hasConcept C105795698 @default.
- W2766926079 hasConcept C114614502 @default.
- W2766926079 hasConcept C121332964 @default.
- W2766926079 hasConcept C122280245 @default.
- W2766926079 hasConcept C12267149 @default.
- W2766926079 hasConcept C124101348 @default.
- W2766926079 hasConcept C152745839 @default.
- W2766926079 hasConcept C153180895 @default.
- W2766926079 hasConcept C154945302 @default.
- W2766926079 hasConcept C158622935 @default.
- W2766926079 hasConcept C172707124 @default.
- W2766926079 hasConcept C182335926 @default.
- W2766926079 hasConcept C185429906 @default.
- W2766926079 hasConcept C27438332 @default.
- W2766926079 hasConcept C2780576426 @default.
- W2766926079 hasConcept C33923547 @default.
- W2766926079 hasConcept C41008148 @default.
- W2766926079 hasConcept C554190296 @default.