Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767074518> ?p ?o ?g. }
- W2767074518 abstract "There is a long-standing debate in the literature of stratified flows over topography concerning the correct dimensionless number to refer to as a Froude number. Common definitions using external quantities of the flow include $U/(ND)$ , $U/(Nh_{0})$ , and $Uk/N$ , where $U$ and $N$ are, respectively, scales for the background velocity and buoyancy frequency, $D$ is the depth, and $h_{0}$ and $k^{-1}$ are, respectively, height and width scales of the topography. It is also possible to define an internal Froude number $Fr_{unicode[STIX]{x1D6FF}}=u_{0}/sqrt{g^{prime }unicode[STIX]{x1D6FF}}$ , where $u_{0}$ , $g^{prime }$ , and $unicode[STIX]{x1D6FF}$ are, respectively, the characteristic velocity, reduced gravity, and vertical length scale of the perturbation above the topography. For the case of hydrostatic lee waves in a deep ocean, both $U/(ND)$ and $Uk/N$ are insignificantly small, rendering the dimensionless number $Nh_{0}/U$ the only relevant dynamical parameter. However, although it appears to be an inverse Froude number, such an interpretation is incorrect. By non-dimensionalizing the stratified Euler equations describing the flow of an infinitely deep fluid over topography, we show that $Nh_{0}/U$ is in fact the square of the internal Froude number because it can identically be written in terms of the inner variables, $Fr_{unicode[STIX]{x1D6FF}}^{2}=Nh_{0}/U=u_{0}^{2}/(g^{prime }unicode[STIX]{x1D6FF})$ . Our scaling also identifies $Nh_{0}/U$ as the ratio of the vertical velocity scale within the lee wave to the group velocity of the lee wave, which we term the vertical Froude number, $Fr_{vert}=Nh_{0}/U=w_{0}/c_{g}$ . To encapsulate such behaviour, we suggest referring to $Nh_{0}/U$ as the lee-wave Froude number, $Fr_{lee}$ ." @default.
- W2767074518 created "2017-11-10" @default.
- W2767074518 creator A5024182748 @default.
- W2767074518 creator A5033279409 @default.
- W2767074518 date "2017-10-20" @default.
- W2767074518 modified "2023-10-10" @default.
- W2767074518 title "An unambiguous definition of the Froude number for lee waves in the deep ocean" @default.
- W2767074518 cites W1509239794 @default.
- W2767074518 cites W1561108359 @default.
- W2767074518 cites W1970543114 @default.
- W2767074518 cites W1986924808 @default.
- W2767074518 cites W1987492283 @default.
- W2767074518 cites W1995270722 @default.
- W2767074518 cites W2006837880 @default.
- W2767074518 cites W2016206105 @default.
- W2767074518 cites W2029428099 @default.
- W2767074518 cites W2034693793 @default.
- W2767074518 cites W2035871422 @default.
- W2767074518 cites W2039335783 @default.
- W2767074518 cites W2041382426 @default.
- W2767074518 cites W2071787025 @default.
- W2767074518 cites W2073158250 @default.
- W2767074518 cites W2081618373 @default.
- W2767074518 cites W2100624102 @default.
- W2767074518 cites W2110475197 @default.
- W2767074518 cites W2113748893 @default.
- W2767074518 cites W2119548161 @default.
- W2767074518 cites W2120149962 @default.
- W2767074518 cites W2138780412 @default.
- W2767074518 cites W2147122389 @default.
- W2767074518 cites W2167801319 @default.
- W2767074518 cites W2180790387 @default.
- W2767074518 cites W2607406604 @default.
- W2767074518 doi "https://doi.org/10.1017/jfm.2017.701" @default.
- W2767074518 hasPublicationYear "2017" @default.
- W2767074518 type Work @default.
- W2767074518 sameAs 2767074518 @default.
- W2767074518 citedByCount "19" @default.
- W2767074518 countsByYear W27670745182019 @default.
- W2767074518 countsByYear W27670745182020 @default.
- W2767074518 countsByYear W27670745182021 @default.
- W2767074518 countsByYear W27670745182022 @default.
- W2767074518 countsByYear W27670745182023 @default.
- W2767074518 crossrefType "journal-article" @default.
- W2767074518 hasAuthorship W2767074518A5024182748 @default.
- W2767074518 hasAuthorship W2767074518A5033279409 @default.
- W2767074518 hasConcept C121332964 @default.
- W2767074518 hasConcept C134306372 @default.
- W2767074518 hasConcept C153294291 @default.
- W2767074518 hasConcept C185975314 @default.
- W2767074518 hasConcept C190330329 @default.
- W2767074518 hasConcept C194896862 @default.
- W2767074518 hasConcept C196558001 @default.
- W2767074518 hasConcept C204321447 @default.
- W2767074518 hasConcept C206835866 @default.
- W2767074518 hasConcept C24872484 @default.
- W2767074518 hasConcept C2524010 @default.
- W2767074518 hasConcept C2776310255 @default.
- W2767074518 hasConcept C2779729707 @default.
- W2767074518 hasConcept C33923547 @default.
- W2767074518 hasConcept C38349280 @default.
- W2767074518 hasConcept C41008148 @default.
- W2767074518 hasConcept C500551929 @default.
- W2767074518 hasConcept C538625479 @default.
- W2767074518 hasConcept C57879066 @default.
- W2767074518 hasConcept C62520636 @default.
- W2767074518 hasConceptScore W2767074518C121332964 @default.
- W2767074518 hasConceptScore W2767074518C134306372 @default.
- W2767074518 hasConceptScore W2767074518C153294291 @default.
- W2767074518 hasConceptScore W2767074518C185975314 @default.
- W2767074518 hasConceptScore W2767074518C190330329 @default.
- W2767074518 hasConceptScore W2767074518C194896862 @default.
- W2767074518 hasConceptScore W2767074518C196558001 @default.
- W2767074518 hasConceptScore W2767074518C204321447 @default.
- W2767074518 hasConceptScore W2767074518C206835866 @default.
- W2767074518 hasConceptScore W2767074518C24872484 @default.
- W2767074518 hasConceptScore W2767074518C2524010 @default.
- W2767074518 hasConceptScore W2767074518C2776310255 @default.
- W2767074518 hasConceptScore W2767074518C2779729707 @default.
- W2767074518 hasConceptScore W2767074518C33923547 @default.
- W2767074518 hasConceptScore W2767074518C38349280 @default.
- W2767074518 hasConceptScore W2767074518C41008148 @default.
- W2767074518 hasConceptScore W2767074518C500551929 @default.
- W2767074518 hasConceptScore W2767074518C538625479 @default.
- W2767074518 hasConceptScore W2767074518C57879066 @default.
- W2767074518 hasConceptScore W2767074518C62520636 @default.
- W2767074518 hasLocation W27670745181 @default.
- W2767074518 hasOpenAccess W2767074518 @default.
- W2767074518 hasPrimaryLocation W27670745181 @default.
- W2767074518 hasRelatedWork W2010514120 @default.
- W2767074518 hasRelatedWork W2020489137 @default.
- W2767074518 hasRelatedWork W2028677547 @default.
- W2767074518 hasRelatedWork W2033600504 @default.
- W2767074518 hasRelatedWork W2040568743 @default.
- W2767074518 hasRelatedWork W2046719969 @default.
- W2767074518 hasRelatedWork W2083760850 @default.
- W2767074518 hasRelatedWork W2085426523 @default.
- W2767074518 hasRelatedWork W2329144713 @default.
- W2767074518 hasRelatedWork W4236094816 @default.
- W2767074518 hasVolume "831" @default.