Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767087747> ?p ?o ?g. }
- W2767087747 abstract "Over the last decade, automatic emotion recognition has become well established. The gold standard target is thereby usually calculated based on multiple annotations from different raters. All related efforts assume that the emotional state of a human subject can be identified by a 'hard' category or a unique value. This assumption tries to ease the human observer's subjectivity when observing patterns such as the emotional state of others. However, as the number of annotators cannot be infinite, uncertainty remains in the emotion target even if calculated from several, yet few human annotators. The common procedure to use this same emotion target in the learning process thus inevitably introduces noise in terms of an uncertain learning target. In this light, we propose a 'soft' prediction framework to provide a more human-like and comprehensive prediction of emotion. In our novel framework, we provide an additional target to indicate the uncertainty of human perception based on the inter-rater disagreement level, in contrast to the traditional framework which is merely producing one single prediction (category or value). To exploit the dependency between the emotional state and the newly introduced perception uncertainty, we implement a multi-task learning strategy. To evaluate the feasibility and effectiveness of the proposed soft prediction framework, we perform extensive experiments on a time- and value-continuous spontaneous audiovisual emotion database including late fusion results. We show that the soft prediction framework with multi-task learning of the emotional state and its perception uncertainty significantly outperforms the individual tasks in both the arousal and valence dimensions." @default.
- W2767087747 created "2017-11-10" @default.
- W2767087747 creator A5016033078 @default.
- W2767087747 creator A5019651318 @default.
- W2767087747 creator A5019825395 @default.
- W2767087747 creator A5036056631 @default.
- W2767087747 creator A5069921704 @default.
- W2767087747 date "2017-10-19" @default.
- W2767087747 modified "2023-09-27" @default.
- W2767087747 title "From Hard to Soft" @default.
- W2767087747 cites W1785074626 @default.
- W2767087747 cites W1883737420 @default.
- W2767087747 cites W1985945240 @default.
- W2767087747 cites W2000271339 @default.
- W2767087747 cites W2005418748 @default.
- W2767087747 cites W2017411072 @default.
- W2767087747 cites W2021913835 @default.
- W2767087747 cites W2024289965 @default.
- W2767087747 cites W2032254851 @default.
- W2767087747 cites W2047194288 @default.
- W2767087747 cites W2061873838 @default.
- W2767087747 cites W2064675550 @default.
- W2767087747 cites W2080501585 @default.
- W2767087747 cites W2100569924 @default.
- W2767087747 cites W2116777898 @default.
- W2767087747 cites W2124737236 @default.
- W2767087747 cites W2132555391 @default.
- W2767087747 cites W2133990480 @default.
- W2767087747 cites W2146334809 @default.
- W2767087747 cites W2154419531 @default.
- W2767087747 cites W2162745601 @default.
- W2767087747 cites W2164186291 @default.
- W2767087747 cites W2164699598 @default.
- W2767087747 cites W2188643306 @default.
- W2767087747 cites W2218066794 @default.
- W2767087747 cites W2246178008 @default.
- W2767087747 cites W2251810906 @default.
- W2767087747 cites W2346454595 @default.
- W2767087747 cites W2399733683 @default.
- W2767087747 cites W2511508976 @default.
- W2767087747 cites W2560025328 @default.
- W2767087747 cites W2592535880 @default.
- W2767087747 cites W2735449402 @default.
- W2767087747 cites W2915606245 @default.
- W2767087747 doi "https://doi.org/10.1145/3123266.3123383" @default.
- W2767087747 hasPublicationYear "2017" @default.
- W2767087747 type Work @default.
- W2767087747 sameAs 2767087747 @default.
- W2767087747 citedByCount "60" @default.
- W2767087747 countsByYear W27670877472018 @default.
- W2767087747 countsByYear W27670877472019 @default.
- W2767087747 countsByYear W27670877472020 @default.
- W2767087747 countsByYear W27670877472021 @default.
- W2767087747 countsByYear W27670877472022 @default.
- W2767087747 countsByYear W27670877472023 @default.
- W2767087747 crossrefType "proceedings-article" @default.
- W2767087747 hasAuthorship W2767087747A5016033078 @default.
- W2767087747 hasAuthorship W2767087747A5019651318 @default.
- W2767087747 hasAuthorship W2767087747A5019825395 @default.
- W2767087747 hasAuthorship W2767087747A5036056631 @default.
- W2767087747 hasAuthorship W2767087747A5069921704 @default.
- W2767087747 hasBestOaLocation W27670877472 @default.
- W2767087747 hasConcept C111919701 @default.
- W2767087747 hasConcept C119857082 @default.
- W2767087747 hasConcept C154945302 @default.
- W2767087747 hasConcept C15744967 @default.
- W2767087747 hasConcept C162324750 @default.
- W2767087747 hasConcept C169760540 @default.
- W2767087747 hasConcept C187736073 @default.
- W2767087747 hasConcept C26760741 @default.
- W2767087747 hasConcept C2780451532 @default.
- W2767087747 hasConcept C41008148 @default.
- W2767087747 hasConcept C98045186 @default.
- W2767087747 hasConceptScore W2767087747C111919701 @default.
- W2767087747 hasConceptScore W2767087747C119857082 @default.
- W2767087747 hasConceptScore W2767087747C154945302 @default.
- W2767087747 hasConceptScore W2767087747C15744967 @default.
- W2767087747 hasConceptScore W2767087747C162324750 @default.
- W2767087747 hasConceptScore W2767087747C169760540 @default.
- W2767087747 hasConceptScore W2767087747C187736073 @default.
- W2767087747 hasConceptScore W2767087747C26760741 @default.
- W2767087747 hasConceptScore W2767087747C2780451532 @default.
- W2767087747 hasConceptScore W2767087747C41008148 @default.
- W2767087747 hasConceptScore W2767087747C98045186 @default.
- W2767087747 hasFunder F4320332999 @default.
- W2767087747 hasLocation W27670877471 @default.
- W2767087747 hasLocation W27670877472 @default.
- W2767087747 hasLocation W27670877473 @default.
- W2767087747 hasOpenAccess W2767087747 @default.
- W2767087747 hasPrimaryLocation W27670877471 @default.
- W2767087747 hasRelatedWork W2081647779 @default.
- W2767087747 hasRelatedWork W2961085424 @default.
- W2767087747 hasRelatedWork W3046775127 @default.
- W2767087747 hasRelatedWork W3170094116 @default.
- W2767087747 hasRelatedWork W4205958290 @default.
- W2767087747 hasRelatedWork W4285260836 @default.
- W2767087747 hasRelatedWork W4286629047 @default.
- W2767087747 hasRelatedWork W4306321456 @default.
- W2767087747 hasRelatedWork W4306674287 @default.
- W2767087747 hasRelatedWork W4224009465 @default.