Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767110596> ?p ?o ?g. }
- W2767110596 endingPage "155" @default.
- W2767110596 startingPage "125" @default.
- W2767110596 abstract "Abstract It is essential to accurately model the anisotropic plastic deformation and ductile fracture of metals in order to guarantee the reliable numerical analysis and optimization of metal forming. For this purpose, the Drucker function is revisited. Effect of the third stress invariant in the Drucker function is analyzed and calibrated for metals with body-centered cubic (BCC) and face-centered cubic (FCC) crystal systems based on the yielding and plastic flow of both crystal plasticity and biaxial tensile experiments. The calibrated Drucker function is extended into an anisotropic form using a fourth order linear transformation tensor. The anisotropic flexibility is enhanced by two approaches: non-associate flow rule (non-AFR) and the sum of n-components of the anisotropic Drucker function. The proposed anisotropic Drucker function is applied to model the anisotropic behavior of both BCC and FCC metals. The predicted anisotropic behavior is compared with experimental results. The comparison demonstrates that the anisotropy is accurately modeled for both BCC and FCC metals by the anisotropic Drucker function. The anisotropic Drucker function is also implemented into numerical analysis of tension of specimens with a central hole to investigate its computation efficiency under spatial loading compared with the Yld2000-18p function. It is found that the proposed anisotropic Drucker function can reduce about 60% of computation time in case that the Yld2000-18p function is substituted by the anisotropic Drucker function in numerical computation due to its simplicity compared to the Yld2000-18p function. A ductile fracture criterion is also developed by coupling the Drucker function with the first stress invariant. The modified Drucker function is reformulated to investigate the effect of the stress triaxiality and the normalized third invariant on ductile fracture. Comparison of the modified Drucker fracture locus with the experimental results of AA2024-T351 demonstrates that the modified Drucker criterion accurately illustrates the fracture stress of the alloy in wide stress states with the stress triaxiality ranging from −0.5 in plane strain compression to 0.6 in tension of notched specimens. The modified Drucker fracture criterion is expected to be less sensitive to the change of strain path considering that the criterion describes fracture in the stress space. Accordingly, the anisotropic Drucker yield function and the pressure-coupled Drucker fracture criterion are suggested to model anisotropic plastic deformation and to predict the onset of failure for both BCC and FCC metals due to simple implementation in numerical analysis under spatial loading and computation efficiency with brick elements." @default.
- W2767110596 created "2017-11-10" @default.
- W2767110596 creator A5061676060 @default.
- W2767110596 creator A5077106792 @default.
- W2767110596 date "2018-02-01" @default.
- W2767110596 modified "2023-10-12" @default.
- W2767110596 title "Anisotropic yield function based on stress invariants for BCC and FCC metals and its extension to ductile fracture criterion" @default.
- W2767110596 cites W1876105379 @default.
- W2767110596 cites W1969052431 @default.
- W2767110596 cites W1969930163 @default.
- W2767110596 cites W1970914794 @default.
- W2767110596 cites W1971151143 @default.
- W2767110596 cites W1971300598 @default.
- W2767110596 cites W1972848583 @default.
- W2767110596 cites W1973195509 @default.
- W2767110596 cites W1975357928 @default.
- W2767110596 cites W1981977699 @default.
- W2767110596 cites W1983415199 @default.
- W2767110596 cites W1984004802 @default.
- W2767110596 cites W1986293683 @default.
- W2767110596 cites W1988382358 @default.
- W2767110596 cites W1991824779 @default.
- W2767110596 cites W1996550633 @default.
- W2767110596 cites W1998674212 @default.
- W2767110596 cites W1998727245 @default.
- W2767110596 cites W2001646046 @default.
- W2767110596 cites W2002955557 @default.
- W2767110596 cites W2010178746 @default.
- W2767110596 cites W2016463190 @default.
- W2767110596 cites W2020102839 @default.
- W2767110596 cites W2023447267 @default.
- W2767110596 cites W2028494117 @default.
- W2767110596 cites W2032768430 @default.
- W2767110596 cites W2034249563 @default.
- W2767110596 cites W2034589301 @default.
- W2767110596 cites W2035518577 @default.
- W2767110596 cites W2035638364 @default.
- W2767110596 cites W2036922542 @default.
- W2767110596 cites W2041866694 @default.
- W2767110596 cites W2042785872 @default.
- W2767110596 cites W2047824887 @default.
- W2767110596 cites W2048348956 @default.
- W2767110596 cites W2048598423 @default.
- W2767110596 cites W2049633589 @default.
- W2767110596 cites W2049916914 @default.
- W2767110596 cites W2059643182 @default.
- W2767110596 cites W2060588089 @default.
- W2767110596 cites W2065163759 @default.
- W2767110596 cites W2066863577 @default.
- W2767110596 cites W2068492319 @default.
- W2767110596 cites W2070387345 @default.
- W2767110596 cites W2072723661 @default.
- W2767110596 cites W2073961135 @default.
- W2767110596 cites W2086692388 @default.
- W2767110596 cites W2086998939 @default.
- W2767110596 cites W2087771668 @default.
- W2767110596 cites W2089640974 @default.
- W2767110596 cites W2095185290 @default.
- W2767110596 cites W2164119502 @default.
- W2767110596 cites W2291089020 @default.
- W2767110596 cites W2303868044 @default.
- W2767110596 cites W2362217170 @default.
- W2767110596 cites W2535229621 @default.
- W2767110596 cites W2563506672 @default.
- W2767110596 cites W2570157844 @default.
- W2767110596 cites W2571169735 @default.
- W2767110596 cites W2590070644 @default.
- W2767110596 cites W2591099493 @default.
- W2767110596 cites W2592327175 @default.
- W2767110596 cites W2606397882 @default.
- W2767110596 cites W2727864138 @default.
- W2767110596 cites W2754425416 @default.
- W2767110596 cites W2766153094 @default.
- W2767110596 cites W2963984240 @default.
- W2767110596 cites W3144068599 @default.
- W2767110596 cites W3168559346 @default.
- W2767110596 cites W3191074003 @default.
- W2767110596 doi "https://doi.org/10.1016/j.ijplas.2017.10.012" @default.
- W2767110596 hasPublicationYear "2018" @default.
- W2767110596 type Work @default.
- W2767110596 sameAs 2767110596 @default.
- W2767110596 citedByCount "122" @default.
- W2767110596 countsByYear W27671105962018 @default.
- W2767110596 countsByYear W27671105962019 @default.
- W2767110596 countsByYear W27671105962020 @default.
- W2767110596 countsByYear W27671105962021 @default.
- W2767110596 countsByYear W27671105962022 @default.
- W2767110596 countsByYear W27671105962023 @default.
- W2767110596 crossrefType "journal-article" @default.
- W2767110596 hasAuthorship W2767110596A5061676060 @default.
- W2767110596 hasAuthorship W2767110596A5077106792 @default.
- W2767110596 hasConcept C120665830 @default.
- W2767110596 hasConcept C121332964 @default.
- W2767110596 hasConcept C127413603 @default.
- W2767110596 hasConcept C134121241 @default.
- W2767110596 hasConcept C138885662 @default.
- W2767110596 hasConcept C14036430 @default.
- W2767110596 hasConcept C159985019 @default.