Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767117110> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W2767117110 abstract "Emotion recognition from speech signals has abundant applications in daily life. Particularly in speech-based human machine interaction it is used for improving the naturalness. Speech based emotion recognition is done in two steps namely Gender Recognition and Emotion Recognition. Gender Recognition will give the information about the gender (Male or Female) of the speaker and Emotion Recognition extracts the emotion (happy, sad, angry, and lazy etc.) of the speaker. In emotion recognition step back propagation algorithm under ANN is used as a classifier for classifying the emotions. In this paper, proposes emotion recognition from speech signal using Artificial Neural Networks (ANN) and implemented on FPGA device. The results using ANN are compared with the existing method and observed that ANN has lesser space utilization and improved speed than LDA." @default.
- W2767117110 created "2017-11-10" @default.
- W2767117110 creator A5045656913 @default.
- W2767117110 creator A5053810509 @default.
- W2767117110 creator A5065386571 @default.
- W2767117110 date "2017-03-01" @default.
- W2767117110 modified "2023-09-27" @default.
- W2767117110 title "FPGA based emotions recognition from speech signals" @default.
- W2767117110 cites W1964469912 @default.
- W2767117110 cites W1988888548 @default.
- W2767117110 cites W2059706055 @default.
- W2767117110 cites W2062391442 @default.
- W2767117110 cites W2086468861 @default.
- W2767117110 cites W2099336098 @default.
- W2767117110 cites W2112301665 @default.
- W2767117110 cites W2137639365 @default.
- W2767117110 cites W2158061940 @default.
- W2767117110 cites W2158630797 @default.
- W2767117110 doi "https://doi.org/10.1109/icbsii.2017.8082290" @default.
- W2767117110 hasPublicationYear "2017" @default.
- W2767117110 type Work @default.
- W2767117110 sameAs 2767117110 @default.
- W2767117110 citedByCount "3" @default.
- W2767117110 countsByYear W27671171102020 @default.
- W2767117110 countsByYear W27671171102022 @default.
- W2767117110 crossrefType "proceedings-article" @default.
- W2767117110 hasAuthorship W2767117110A5045656913 @default.
- W2767117110 hasAuthorship W2767117110A5053810509 @default.
- W2767117110 hasAuthorship W2767117110A5065386571 @default.
- W2767117110 hasConcept C2777438025 @default.
- W2767117110 hasConcept C28490314 @default.
- W2767117110 hasConcept C41008148 @default.
- W2767117110 hasConcept C42935608 @default.
- W2767117110 hasConcept C9390403 @default.
- W2767117110 hasConceptScore W2767117110C2777438025 @default.
- W2767117110 hasConceptScore W2767117110C28490314 @default.
- W2767117110 hasConceptScore W2767117110C41008148 @default.
- W2767117110 hasConceptScore W2767117110C42935608 @default.
- W2767117110 hasConceptScore W2767117110C9390403 @default.
- W2767117110 hasLocation W27671171101 @default.
- W2767117110 hasOpenAccess W2767117110 @default.
- W2767117110 hasPrimaryLocation W27671171101 @default.
- W2767117110 hasRelatedWork W1002902646 @default.
- W2767117110 hasRelatedWork W2037481744 @default.
- W2767117110 hasRelatedWork W2063534976 @default.
- W2767117110 hasRelatedWork W2312116756 @default.
- W2767117110 hasRelatedWork W2352296208 @default.
- W2767117110 hasRelatedWork W2363391165 @default.
- W2767117110 hasRelatedWork W2365743651 @default.
- W2767117110 hasRelatedWork W2388618054 @default.
- W2767117110 hasRelatedWork W2900316824 @default.
- W2767117110 hasRelatedWork W2980006224 @default.
- W2767117110 isParatext "false" @default.
- W2767117110 isRetracted "false" @default.
- W2767117110 magId "2767117110" @default.
- W2767117110 workType "article" @default.